

Mobile Technology for
Gamification of Natural Language

Grammar Acquisition

Marina Purgina

A DISSERTATION

SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN COMPUTER SCIENCE AND ENGINEERING

Graduate Department of Computer and Information Systems
The University of Aizu

2019

ii

iii

Copyright by Marina Purgina

All Rights Reserved

iv

v

The thesis titled

Mobile Technology for Gamification of
Natural Language Grammar Acquisition

by

Marina Purgina

is reviewed and approved by:

Chief referee
Professor

 Maxim Mozgovoy________________

Professor

 Vitaly Klyuev_____________________

Professor
 John Brine_________________________

Professor
 Incheon Paik_______________________

The University of Aizu

2019

vi

vii

Mobile Technology for Gamification of
Natural Language Grammar Acquisition

Marina Purgina

Submitted for the Degree of Doctor of Philosophy

2019

Abstract

Recent years are marked with rising interest to technologies of gamification,

defined as the use of game design elements in non-gaming contexts. The basic

premise of gamification is that the principles making computer games attractive can

also increase attractiveness of other activities, such as learning. The interest to

gamification technologies is triggered with widespread use of smartphones in general

audience, and the growing popularity of casual mobile games, designed for wide

range of people. Therefore, application developers can rely on unprecedented reach

of their products and expect acceptance of game-like elements by the users. There is

also an active discussion on what exactly constitutes “game-like elements”, suitable

for the use in educational applications without harm for their primary educational

objectives.

In the present work, we discuss a particular case of gamification of language

learning via mobile system WordBricks, created at the University of Aizu. Most

present systems of language learning are based on traditional learning activities, such

as reading, listening, translating, and solving quizzes. WordBricks focuses specifically

on the task of natural language grammar acquisition, and implements a concept of

more user-centric lab-style experimental activities. The primary purpose of

WordBricks is to give the users the capability to construct sentences according to

predefined grammatical rules, and thus understand the basics of grammar system of

viii

a particular natural language. The app is based on the concept of visual grammar

formalism, aimed to encode the rules of grammar in intuitive and user friendly way.

WordBricks was evaluated in three different use scenarios: 1) as a learning aid at

English language classes for computer science students at the University of Aizu,

Japan; 2) as a teacher’s demonstrational tool for the students of the same

background; 3) as a supplementary learning material at Irish language classes for

junior students of a public school in Dublin, Ireland. Our experiments demonstrate

the feasibility of chosen approach on the basis of user feedback and numerical

evidence showing that WordBricks can be as efficient as traditional learning

materials, but providing more immersion and user enjoyment.

We also explore the possibility to automate the process of authoring WordBricks

exercises with natural language processing modules. A significant part of this work

includes manual annotation of grammatical attributes of words and word-word

relationships, which can be also done with current language processing algorithms.

The resulting markup can be corrected if necessary. In addition, automation of text

processing allowed us to implement a procedure of converting arbitrary sentences

into structured visualizations. This functionality helps students to understand the

structure of sentences, not covered in WordBricks exercises.

As a result of experiments, we outline further directions for subsequent

improvement of our technology. It includes introducing additional game-like

elements, designing more learning materials, and making the application easily

customizable by the educators. We also discuss principal difficulties faced by

computer-assisted language learning technology experts due to inherent complexity

of natural language, and challenging issues for our system.

ix

Contents

List of Figures .. xi

List of Tables ... xii

1. Introduction ... 1

1.1 The Rise of Gamification ..2

1.2 Technology, Classroom Practice, and Conscious Learners4

2. Related Works .. 7

2.1 Duolingo and Anki as Different Cases of Gamification 7

2.2 Virtual Labs and Language Learning .. 10

2.3 Exploring Grammar with Interactive Exercises 11

2.4 Grammar Visualization Principles .. 14

3. WordBricks: General Approach ... 17

3.1. Bricks as Visual Elements ... 18

3.2 The Structure of Bricks .. 18

3.3 Chapters and Exercises ... 19

3.4 Sentence Visualization Mode .. 19

4. WordBricks: User Interface and Capabilities .. 21

4.1 General Design of the System ... 21

4.2 User Capabilities ... 22

5. WordBricks: System Architecture .. 25

5.1 System Description .. 25

5.1.1 WordBricks Package Structure .. 25

5.1.2 Implementation of core functionality ... 26

5.2 Brick Description Format .. 27

5.3 Brick Onscreen Configuration Format ... 28

x

5.4 Interactions Between WordBricks Components 29

5.5 Responsive Design of WordBricks GUI .. 32

5.6 Visualizing sentence structure .. 33

5.7 Interoperation with Language Processing Modules 34

6. Classroom Experiments with WordBricks .. 41

6.1 WordBricks as a Learning Aid .. 42

6.2 WordBricks as a Demonstration Tool ... 46

6.3 WordBricks at an Irish Language Class ..48

6.3.1 Evaluation in Irish Language Classroom First Study 50

6.3.2 Evaluation in Irish Language Classroom Second Study 52

6.4 User Suggestions ... 54

6.5 Open Challenges .. 56

7. Discussion and Conclusion .. 59

7.1 Discussion ... 59

7.2 Conclusion .. 60

Bibliography ... 63

Appendix A. Sample Irish Exercise .. 69

Appendix B. Sample XML Descriptions for the Current WordBricks Version ... 79

xi

List of Figures

Figure 1. Language class in East Germany. Source: German Federal Archive 3

Figure 2. A fragment of Duolingo user interface ... 8

Figure 3. Reviewing session with Anki. Source: Wikipedia .. 9

Figure 4. ChemCollective Virtual Lab. Source: chemcollective.org 11

Figure 5. Combining blocks in Scratch ... 14

Figure 6. Shaped blocks in natural language learning materials 14

Figure 7. Visualizations obtained with AT&T GraphViz and ZPAR parser 16

Figure 8. Combining blocks with drag-and-drop interface .. 17

Figure 9. Structure of blocks in Word Bricks ... 19

Figure 10. Chapters; Exercises; Initial onscreen configuration 20

Figure 11. Combining blocks into sentences in WordBricks 22

Figure 12. Combining blocks with drag-and-drop interface 23

Figure 13. Block shapes reflect the natural flow of words in a sentence 29

Figure 14. Scheme of the structure and interaction of components of WordBricks 31

Figure 15. Class diagram of bricks visualization subsystem ...33

Figure 16. Architecture of the system .. 36

Figure 17. Processing pipeline steps for the sentence The little cat devoured a mouse

 .. 39

Figure 18. Processing pipeline steps for the sentence Bhí na hataí agam 40

Figure 19. Progress of individual students in WordBricks and control groups. 45

Figure 20. Model sentence #3 chunked into grammatical units 47

Figure 21. Irish “have” construction in WordBricks .. 49

Figure 22. An example of how WordBricks application works with the Irish language

 ... 54

xii

List of Tables

Table 1. Descriptive Statistics for Two Groups in Diagnostic Test 43

Table 2. Results of the Quantitative Experiments .. 44

Table 3. Model Sentences and Target Structures ...48

Table 4. Summary of student responses in the first pilot study................................... 52

Table 5. Summary of student responses in the second pilot study 53

1

Chapter 1

1. Introduction

Gamification of language learning is a clear trend of recent years.

Widespread use of smartphones and the rise of mobile gaming as a popular

leisure activity among general audience contribute to popularity of gamification,

as application developers can rely on unprecedented reach of their products and

expect acceptance of game-like elements by the users. In practice, most mobile

apps implement traditional language learning activities, such as reading,

listening, translating, and solving quizzes. This work discusses gamification of

learning natural language grammar with a mobile app WordBricks that is based

on a concept of more user-centric lab-style experimental activities. WordBricks

was evaluated in a number of diverse settings, and shows how the principles of

gamification can be applied to this area of second language acquisition. We

discuss general features that enable the users to engage in game-playing behavior,

and analyze open challenges, relevant for a variety of language learning systems.

We consider development of this technology, and various scenarios for its

use. Since the system was designed for students and children in the first place, we

paid much attention to the interface and responsive design of the system. The

system should be intuitive and easy to use. It should be consistent with

pedagogical goals. It should be extensible and adaptable in order to incorporate

new assignments and use cases. Due to the growing popularity of mobile

platforms and mobile-assisted language learning, the system should be available

on a mobile platform. Also the system should be flexible enough to support a

large variety of natural languages.

We also use WordBricks application as a visualization module that can

display a user-supplied sentence as a parse diagram. This sentence can be a part

2

of an exercise or freely added by the user. In the latter case, we use natural

language processing modules to markup the sentence for further conversion to a

set of visual objects. In this regard, specific attention is devoted to developing a

format for presenting syntactic elements and parse diagrams.

1.1 The Rise of Gamification

The practice of second language acquisition has been relying on modern

concepts and technologies of its day for decades. In particular, language labs

equipped with audio recording and playback facilities were in active use in 1970s-

1980s (see Fig. 1) [1]. Thus, the general idea of using modern technologies for

language learning evokes little debate. The main discussions are related to the

development of efficient ways of using the available instruments, and addressing

their limitations. Technologically, language labs of the past century often suffered

from unreliable tape-based systems and insufficient means of teacher control [1].

Methodologically, the prevalent audio-lingual method of teaching was considered

inefficient and fell out of favor in 1970s [2]. However, the technical issues were

eventually resolved with the rise of computing machinery, and audio-lingualism

was driven out by newer, presumably more efficient methods. In general, we

believe that modern practice of computer-assisted language learning (CALL) is

evolving within according to the same principles. Language teachers are seeking

to use the present technology (with its capabilities and limitations) in the most

effective ways, while computer science specialists are trying to advance the

technologies, providing more options for their practical use.

One of the most salient trends in modern computer-assisted education

research is the rising interest to gamification of learning. While the idea to

introduce certain game-like elements into learning is definitely not new, the word

“gamification” came into wide use only in 2010s [3], together with the surge of

related research efforts. It is very likely that this process is connected to the rising

popularity of smartphones and mobile games that turned a large number of

phone owners into casual gamers. According to AdMob statistics, 59% of

smartphone users install games within a week of getting their devices [4], so “it is

difficult to find a person now who hasn’t played at least one video game, making

games more of an accepted and integrated part of our society” [5]. In other

3

words, certain exposure to computer or mobile game experiences can be expected

now from a typical learner, so the developers of educational software can assume

that the users perceive game-like elements as something familiar.

Figure 1. Language class in East Germany (1975). Source: German Federal
Archive

Following the work of Deterding et al. [6], most authors draw a clear

distinction between “gamification” (defined as “the use of game design elements

in non-game contexts”) and related concepts of “(serious) games”, “toys” and

“playful design”. While games and toys can be definitely used in educational

context, the less restrictive concept of using “game design elements” can be

arguably applied to a wider range of scenarios. Pure educational games often hide

dull and repetitive tasks behind colorful graphics and animation, thus perceived

as “chocolate-covered broccoli” by the users [7]. Recent research efforts identified

more subtle “fun factors”, such as concentration, challenge, or immersion that

contribute to the enjoyability of the game experience [8]. However, it is difficult

to design a game that would combine engaging mechanics with high educational

value. One relevant example is DragonBox Algebra game that lets the users

practice solving linear equations. Experiments show that its visual formalism is

hard to connect with the standard mathematical notation, so the students using

DragonBox Algebra do not improve their math tests scores [9, 10].

Still, the motivation to combine game-like experiences with education is

strongly supported with a simple observation: “since video games… can

demonstrably motivate users to engage with them with unparalleled intensity

4

and duration, game elements should be able to make other, non-game products

and services more enjoyable and engaging as well” [6]. Thus, gamification

suggests a somewhat lightweight alternative to engaging in full-fledged

educational game projects, evoking another question: what are these “game

elements”, able to motivate the users? Some authors express very bitter views on

gamification, arguing that in practice it became a collective term for a number of

exploitative techniques for increasing user spending, and having no relation to

core game process [11, 12].

A work by Morford et al. [3] introduces six basic traits of game-playing

behavior:

1) direct impact on the game outcome and results;

2) clear goals and/or end conditions;

3) the presence of rules and barriers;

4) probabilistic outcome;

5) development of strategies and heuristics;

6) non-coerced initiation.

Strikingly, this list does not include elements or activities explicitly labeled

as “fun”. One possible interpretation of the results obtained by Morford et al. is to

conclude that many processes, possessing the stated traits (1-6) are perceived as

fun or, at least, engaging by the users, and thus can be considered “gamified”

even if they lack some other elements, typical for computer games (such as

graphics, competitive gameplay, arcade controls or engaging narrative).

1.2 Technology, Classroom Practice, and Conscious

Learners

Wide adoption of technologies in education is primarily driven with

advancements that make their use attractive for teachers and learners. One

example of a technological success story is ubiquitous adoption of flight

simulators in pilot training programs [13]. Computer-assisted language learning

is also widely used in practice, if we follow its common definition as “the use of

computers in language learning activities” [14]. However, a closer look reveals

5

that computer technologies are most commonly used in traditional learning

activities, such as face-to-face chats, watching video clips and listening to audio,

participating in group discussions, and reading texts. Consequently, the main

emphasis is usually made on general-purpose computer instruments, such as

Skype, YouTube, Facebook, and various online forums and resources [15]. On the

other hand, dedicated CALL systems and specialized technologies are rarely

mentioned.

The situation with specialized CALL instruments is somewhat complicated.

To begin with, there is no general agreement about their effectiveness among

experts, as shown in Hubbard’s survey, conducted in 2002. Hubbard notes: “…it

is interesting that questions of effectiveness still tend to dominate. In fact, the

basic questions of "Is CALL effective?" and "Is it more effective than

alternatives?" remain popular even among those who have been centrally

involved in the field for an extended period of time.” [16]. We believe that, at

least, in part this situation can be explained with relative immaturity of language

processing technologies that could potentially be of great benefit for the learners.

Among these technologies are machine translation, automated speech

recognition, grammar checking, and feedback generation, to name a few.

Automated speech analysis is used to certain extent (e.g., in Rosetta Stone

software), but its quality is often criticized [17, 18]. In addition, CALL applications

are seemingly of limited interest for natural language processing community. As

noted in [19], “the development of systems using NLP technology is not on the

agenda of most CALL experts, and interdisciplinary research projects

integrating computational linguists and foreign language teachers remain very

rare”. In addition, it is probably not easy to find the best use cases even for the

existing language technologies in a way that would provide benefits for the

learners despite technological limitations. Therefore, the progress in this field is

hindered by the necessity of coordinated efforts between the teachers and

technology experts, who have different agendas and constraints.

In this situation, gamification is an interesting direction of research, since it

often deals with active conscious learners rather than participants of

predominantly teacher-guided courses. Let us recall that one of the

6

characteristics of game-playing behavior is non-coerced initiation, meaning that

“a player plays the game because he wants to, not because he has to” [3].

Therefore, while gamification is possible both inside and outside the classroom,

we believe that the best results can be achieved in voluntary user-initiated

learning sessions, more closely resembling typical game-playing scenarios. Even

if a certain application supports only basic traditional learning activities (such as

reading and listening), it can reinforce user motivation and make the process of

learning a language less burdensome (or more enjoyable, depending on one’s

perspective). Regardless of a student’s attitude towards language learning, we

must concede that this process involves numerous repetitive tasks and memory

drills. For example, to master Japanese, one has to learn around 2000-3000

Chinese characters [20]. It is difficult to imagine learning strategies that would

make this activity inherently fun and enjoyable. Indeed, most learners in practice

rely on different variations of drills [21] (mnemonics and other techniques still

cannot liberate students from drilling sessions), so any technological tricks that

make this undertaking less daunting should be appreciated. At the same time, it is

not easy to estimate how many users would be willing to participate in such non-

coercive game-like educational activities, and thus benefit most from

gamification. However, various studies conclude that at least people engaged in

daily learning activities (such as university students) are willing to use their

mobile phones for out-of-classroom learning as well [22, 23]. Thus, the ubiquity

of mobile devices, wide spread of mobile gaming, and users’ willingness to use

mobile devices as learning tools constitutes a perfect combination for the success

of gamification techniques at the present time.

7

Chapter 2

2. Related Works

2.1 Duolingo and Anki as Different Cases of Gamification

To illustrate some of the principles outlined in the previous section, let us

quickly consider two successful language-learning applications, Duolingo and

Anki, and discuss how these completely different kinds of tools agree with general

principles of gamification.

Duolingo is often considered as one of the most successful language learning

apps on the market with around 200 mln subscribers worldwide [24]. It received

numerous positive responses by the users [25, 26], and its efficiency in keeping

user attention and increasing language proficiency is reported in research

literature [27, 28]. The developers of Duolingo attribute their success directly to

gamification. In particular, they mention four basic pillars of their approach [24]:

1) dissection of the large goal (learning a language) into a set of small daily

user-chosen goals;

2) visual clues to track user progress;

3) emails and notifications for motivating inactive users to return to their

studies;

4) rewards and achievement badges for continuous daily use (known as “the

streak”).

Technically, Duolingo implements a number of traditional exercises, such as

“translate a sentence”, “match words with their translations”, “type the

pronounced phrase” or “pronounce the given phrase” [29]. It is important to note

that the developers do not try to cover ordinary tasks with a “chocolate layer” of a

game. The exercises are presented in the same way as in conventional textbooks

8

(see Fig. 2). The application is clearly aimed at conscious learners who fully

acknowledge that they are involved in a laborious and not always fun activity of

learning a language rather than playing a game. Thus, Duolingo relies on more

subtle principles of gamification, aimed to introduce game-playing behavior into

learning. Indeed, typical learning sessions in Duolingo possess most of the traits

of game-playing behavior listed in [3].

Figure 2. A fragment of Duolingo user interface

Duolingo, however, is a showcase of success story that is hard to reproduce.

The app implements vast functionality, so it is difficult to recommend following

the same approach in smaller-scale projects. Therefore, it is interesting to

consider the case of much smaller (in terms of functionality) project Anki that

aims to create an intelligent flashcard organizer for desktop and mobile

platforms.

At a glance, Anki is a plain and simple-looking application that implements

only the required functions, necessary for its purpose, and does not adhere to any

gamification principles. However, Anki is well known among language learners.

The Android version of the app is installed on over one million devices, and is

rated by over than 32,000 users (as of April, 2018). It is also a subject of several

research articles [30, 31], and often praised and recommended by the users [32,

33]. Anki implements a space repetition procedure [34] that constantly

rearranges flashcards in such a way that new and poorly memorized cards are

shown more frequently. This way, there is no need to review the whole deck of

cards during each learning session: the system selects the cards for the next

9

review automatically. In a sample session shown in Fig. 3, the user has to recall

the correct translation of the word “рассказ”, and after revealing the answer

(“story, tale”) press the corresponding button. If the card is forgotten, the user

should press “Again” and try this card again in a few minutes. Similarly, the

button “Good” will schedule this card for review in 3 days.

Figure 3. Reviewing session with Anki. Source: Wikipedia

While gamification was apparently not in the agenda of Anki developers, we

should note some casual similarities between certain Anki features and deliberate

game-like elements of Duolingo:

1) the large goal of memorizing the whole deck of cards is split into daily

reviewing sessions;

2) users can track their progress by checking statistical data in a special

window;

3) users are strongly encouraged to keep their “streak” and adhere to daily

reviewing sessions to avoid a flood of unreviewed cards.

Since the users can freely create and share cards, there is even a certain

social element in this activity. We also believe that reviewing sessions in Anki can

be considered game-playing behavior according to [3].

The case of Anki shows that gamification does not necessarily have to be a

well-thought strategy. Game-likeness can be an inherent property of a certain

10

study process, so the software developers just have to recognize game-like

elements and support them properly in their product.

2.2 Virtual Labs and Language Learning

Duolingo, Anki and numerous other related apps provide great examples of

modern technology-driven way of supporting learning activities and learner

motivation. However, in terms of content they represent traditional learning

materials and exercises. Their true power comes mostly from mobility,

multimedia capabilities, and game-like features, while the use of dedicated

language processing technologies is still very limited (which probably can be

explained with their relative immaturity, as we discussed above). In practice it

means that some important elements of language learning remain outside the

scope of most computer-assisted language learning tools. In particular, virtually

no instrument can evaluate and correct user-constructed phrases, though such

corrective feedback is usually considered an integral part of learning by many

researchers [35] (some others, such as Truscott [36], argue against it). In any

case, feedback of some kind exist in most learning activities.

The effect of technological maturity can be seen in some educational tools,

available for natural sciences, such as physics or chemistry. The foundations of

these sciences are more precisely defined in mathematical terms, which opens

new possibilities for educational software developers. For instance, Open Source

Physics [37] and ChemCollective [38] projects collect a vast amount of interactive

simulations in physics and chemistry (see Fig. 4). These instruments can be

treated as “virtual labs” that enable the students recreate textbook experiments

on their computers and even run their own experimental setups and analyze the

outcomes. The equivalent of ChemCollective in language learning would be a

virtual character (chatbot), able to discuss a range of predefined topics or engage

in a free dialog with the user, and provide different kinds of feedback.

While the currently available technology cannot support such functionality,

we argue that certain elements of user feedback can be automated. One example

is automated speech analysis and recognition, mentioned previously. Another

possible direction is the analysis of the structure of user-supplied text,

11

implemented, e.g., in a Japanese language tutoring system Robo-Sensei [39]. In

the subsequent sections, we will introduce our own system WordBricks that tries

to gamify the process of grammar acquisition, using virtual lab approach, found

in the systems like Open Source Physics and ChemCollective.

2.3 Exploring Grammar with Interactive Exercises

Natural language grammar is an essential topic of most common language

courses. It is often integrated into general textbooks or covered in dedicated

literature, such as well-known English grammar reference books by Betty Azar

[40] or Raymond Murphy [41]. While some educators, such as Stephen Krashen,

argue against explicit teaching of grammar [42], we are not taking sides in this

debate and merely state that grammar as a subject is widely taught, and thus

grammar acquisition can be considered a legitimate target for a CALL system.

Figure 4. ChemCollective Virtual Lab. Source: chemcollective.org

Today’s actual grammar teaching practice is primarily focused on traditional

exercises aimed at acquisition of proper grammatical forms and rules. Numerous

studies indicate that most research on “innovative” grammar teaching methods

12

have little impact on textbook content and classroom activities [83]. Jean and

Simard [84] note that “grammar instruction is perceived by both students and

teachers as necessary and effective”, and thus most educators are reluctant to

abandon it, especially in the absence of universal agreement on possible

alternatives.

There is, however, an ongoing discussion of particular ways to implement

grammar instruction in practice. For example, common advice is to focus on

student communication, and to draw attention to grammar forms arising

naturally in the process rather than following a predefined list of grammatical

structures [85]. Still, this approach can be implemented differently by different

teachers, and there are no universally preferred ways to explain grammatical

phenomena. For example, Larsen-Freeman [82] suggests to focus on reasons

rather than rules (e.g., while considering a sentence “There is a snowstorm

coming”, the teacher should explain that there introduces new information, and

new information is marked with indefinite determiners such as a, rather than

quote the corresponding formal grammar rule).

Certain attention is paid to the problem of balance between input processing

and production activities [86] and to the creation of “focused tasks” designed to

practice specific grammatical structures [87]. In general, most conventional

activities are not marked as “inherently (in)efficient” in research literature.

Effectiveness depends primarily on their appropriate implementation.

Judging from typical grammar book contents, most common types of

exercises require the language learner to form grammatically correct sentences.

These exercises come in numerous variations, such as:

1) jumbled sentence: put the words in the correct order (possibly, with

altering their forms);

2) fill the gap: fill the gap in a phrase using the appropriate word from the

given list;

3) find errors: decide which phrases from the given list are grammatically

correct;

13

4) rephrase: rewrite the given phrases using the specified grammatical

construction.

The exercises are usually designed to have a single correct answer, provided

in the “Answers” section.

We decided to elaborate this scheme by providing the user more

interactivity and more visual clues, fostering better understanding of grammatical

constructions. We believe that the lack of interactivity is one of the most salient

shortcomings of traditional grammar book exercises. A learner can confirm own

understanding of how to use certain words in certain combinations using the

rules described in the given book section, but has no way to experiment with

these words and rules. For instance, the learner might want to try substituting

one word with another, using a word in another context, or combining two rules

to formulate a more complex sentence. Our roadmap included the following

scenarios (partially implemented at the present time):

1) The user sees on the screen a number of movable words, related to an

individual exercise in a particular grammar book section. The task is to

combine the words into a single sentence (so, this is a variation of a

“jumbled sentence” exercise type). The user is also able to substitute

certain words with their word forms.

2) In addition to the first scenario, the user is able to add new words related

to the same grammar book section, and freely experiment with them (i.e.,

change their word forms and connect them into sentences).

3) The user can select any words from the available word bank and freely

combine them.

4) The user can add new words to the word bank and analyze the structure of

arbitrary sentences.

The viability of this plan (both in terms of technical feasibility and in terms

of pedagogical value) strongly depends on a particular approach to visualization.

In our case, graphics reflect a certain “visual grammar language” that directly

influences learner perceptions and system capabilities.

14

2.4 Grammar Visualization Principles

Our approach to designing such a visual language is influenced by Scratch

[43], which is a system for learning the basics of programming. Programming

languages have a grammar (albeit much simpler than human languages do), so it

is essential to understand how individual instructions can be combined into

complex structures. Scratch expresses grammar rules by representing

instructions as blocks of different shapes, so that only matching blocks can be

connected into a single structure (see Fig. 5). Scratch’s graphical editor is not just

a simpler way to write computer programs, helpful for the beginners. We believe

that it can be treated as a construal [44] that forms a model of a programming

language in the learner’s mind. This way, the learner understands both the rules

of grammar and the reasons why they work in a certain way (because one cannot

fit a rectangular block into a round hole). A similar idea is used to some extent in

natural language learning as well [45] (see Fig. 6).

Figure 5. Combining blocks in Scratch

Figure 6. Shaped blocks in natural language learning materials. Source: Ebbels

15

Obviously, it is much harder to design a consistent set of blocks for a natural

language than for a simplified programming environment. Words in natural

language have many grammatical attributes (such as part of speech, gender,

person and number), and the rules of grammar are often complex and contain

numerous exceptions. Therefore, we do not strive for a perfect system (in fact,

even Scratch blocks do not always adhere to the principle of shape matching), but

aim to illustrate at least the basic phenomena of natural language grammar.

It is probably even more difficult to decide the logic of block arrangement

inside an individual sentence. As shown in the Fig. 5, a Scratch program

resembles a two-dimensional jigsaw puzzle. Certain blocks in Scratch, such as

“if…then” construction, have several “connectors”. Other blocks can be connected

to the top or the bottom of an “if” block, placed inside it, or between the words “if”

and “then”. Simpler blocks, such as “mouse down?”, can only be placed into the

connectors inside other blocks. Therefore, it is necessary to decide what kind of

connectors individual blocks should have, and how to arrange them on the screen

so that they adequately represent syntactic structure of natural language

sentences.

Existing linguistic theories approach the problem of sentence structure from

different perspectives. We base our project on dependency grammar theory [46]

that suggest connecting individual words in a sentence with direct links, reflecting

“head/dependent” relationships. Dependency grammar formalism is widely used

in natural language processing, and practical principles of dependency-based

sentence markup are well documented [47]. Our main motivation for relying on

dependency grammar formalism was its resemblance to the structures of Scratch

and to the Shape Coding system introduced by Ebbels [45]. Furthermore,

dependency relations require no additional visual blocks (all blocks represent

sentence words), which reduces the number of onscreen objects.

As a result of converting a sentence into a set of head/dependent pairs, we

obtain a tree-like structure that has to be visualized. Unfortunately, common

types of visualizations can be difficult to understand for non-specialists (see

16

Fig. 7). Therefore, we had to design our own scheme, somewhat similar to the

Ebbels’s Shaping Coding system.

Figure 7. Visualizations obtained with AT&T GraphViz (above) and ZPAR parser
(below)

17

Chapter 3

3. WordBricks: General Approach

Initially, WordBricks was conceived as a desktop application [48]. It

followed the traditional methods of visualizing word links and implemented a

rich system of graphical elements represented various grammatical phenomena.

Recently we redesigned WordBricks as a mobile app based on simpler and

cleaner principles of visualization that greatly improved user experience (see

Fig. 8).

Figure 8. Combining blocks with drag-and-drop interface

In WordBricks, all syntactic elements of a sentence, such as words or the

whole phrases are represented with blocks. The shapes and colors of such blocks

depend on a set of their language-dependent grammatical attributes, such as part

of speech, person, gender, and so on. Some blocks also have one or more same-

colored connectors. Each connector is shaped according to the set of grammatical

attributes associated with it. Connectors are “placeholders” for dependent

18

syntactic elements, such as words or phrases. For example, most verbs have a

connector for a subject in the left-hand size of the block, and for an object in the

right-hand side of the block. If a shape of a connector matches a shape of a certain

block, and the set of grammatical attributes of a block forms a subset of

grammatical attributes of a connector, the user can insert the block into the

connector.

3.1. Bricks as Visual Elements

Basic onscreen elements in WordBricks are quadrilateral-shaped elements

called word bricks. Each brick is characterized with its shape, color, word(s), and

a set of quadrilateral-shaped connectors that can be located on either side of the

word. Bricks also have a number of associated non-graphical attributes, invisible

to the user. The most important of them is a textual lemma, used to combine

bricks into groups. Any bricks sharing a common lemma belong to the same

group. Typically, a lemma is simply a base form of the brick’s word. Let us use the

term brick signature to refer to the set of user-perceived graphical features of a

brick (shape, color, words and connectors).

3.2 The Structure of Bricks

Each brick is associated with a set of textual attributes and characterized

with a (background) color and a shape. The attributes unambiguously define the

shape and the color of a brick. Attributes can have names, but this is optional.

Each brick contains a linear list of fixed (pre-determined) words and connectors.

Each word is a static pre-defined textual element, drawn on a brick background.

Like bricks, each connector is associated with the same set of textual attributes

that define its shape. All connectors are drawn using the same background color.

Each connector also has an optional textual label (see Fig. 9). A connector can be

addressed either by its 1-based cardinal number in the list of connectors or by its

label (which is not guaranteed to be unique, though). A brick can be addressed by

its unique nonempty textual ID. Furthermore, a brick is associated with a textual

lemma that serves as an ID of the group the brick belongs to.

19

A brick can be placed inside another brick’s connector if that connector’s

attributes form a subset of the set of brick attributes. For example, one may place

the brick with the attributes [noun, common case, plural, third person] inside a

connector with the attributes [noun, common case].

Figure 9. Structure of blocks in Word Bricks

3.3 Chapters and Exercises

Initially, the user sees a title screen with a list of elements, called chapters.

By tapping on a chapter, the user opens a list of new elements, called exercises. In

the current design, the first exercise in the list is preloaded, but the user can

choose any other exercises from the side menu to load (see Fig. 10). Each

exercise, in its turn, is a brick configuration that lists all the bricks available for

the user within the given exercise, and the initial onscreen content. The user can

switch back and forth between individual exercises without losing onscreen

content of the previous exercise.

3.4 Sentence Visualization Mode

In the sentence visualization mode, WordBricks lets the user to experiment

with any words and word combinations to check which constructions are

admissible according to natural language grammar. On startup, the application

20

displays an input box prompting the user to provide any arbitrary sentence. After

the user taps the OK button, the application sends a request to the server side.

The server returns an XML document describing the desired brick configuration

to be displayed on the screen. This way, WordBricks is used as a visualization

module, and its primary purpose is to displays a static structure of already linked

bricks, corresponding to a user-supplied sentence, while all linguistic markup and

word-word linkage is performed on the server side.

Figure 10. (left) Chapters; (center) Exercises; (right) Initial onscreen
configuration

21

Chapter 4

4. WordBricks: User Interface and Capabilities

4.1 General Design of the System

In the current version of the system, the user has to select a particular

exercise in the main menu, and the corresponding predefined blocks will appear

on the screen. In addition, some optional blocks will be made available via the

“word bank” menu of the application.

This way, the user sees on the screen the blocks of different colors and

shapes, representing words and phrases, and can connect them to get a

completed sentence. In many cases, the user only needs to make sure that the

shapes of the block and the connector match, to join them together. If the shapes

do match, but the attributes do not, the system will display a hint, explaining

which mismatching attributes prevent the elements to be connected. In most our

experiments, the shape of a block is defined by its part of speech, but this

configuration is flexible. Unfortunately, in practice it is difficult to show all

grammatical attributes visually on the block, so we have to rely on the system of

hints to provide additional error feedback to the user.

This method of displaying word links can be seen as a way to visualize

dependency relationships, similar to the ones shown in Fig. 7. Our approach

enforces a certain word order in accordance to the order of connectors and let us

display the resulting sentence in a natural linear way (see Fig. 11). However, it

cannot handle non-projective dependencies that rarely appear in English, but

may constitute up to 25-27% of constructions in some languages such as Czech

and German [49].

22

Figure 11. Combining blocks into sentences in WordBricks

Since WordBricks is a mobile application, it follows conventional

touchscreen interface conventions. The user can move blocks and fragments of

sentences in any direction on the screen using drag-and-drop (see Fig. 12). The

whole screen area except the menu bar at the top and the status bar at the bottom

is used for brick arrangement. Double tap on a block opens its settings. Currently,

the main functionality of the settings dialog is the selection of the desired word

form. For example, if an exercise contains the word “cat”, the only way to obtain

“cats” on the screen is via this dialog.

4.2 User Capabilities

The user can transform or remove any onscreen brick using a popup menu,

activated by double-tapping the brick. In the current version this menu can be

only activated for a free brick (that is not linked to another brick and does not link

any other bricks). This menu should have two elements: a delete button that

removes the brick, and a list of bricks that can be chosen to substitute the given

brick.

23

The list can be obtained as follows. First, we select all the bricks with the

same lemma as the current brick. Next, we filter the list to keep there the bricks

with different signatures only. It makes sense to show actual graphical bricks in

this menu instead of textual labels.

“Add brick” window is activated with a plus button located on the screen. In

the simplest form, it should contain a list of all bricks available in the given

exercise. In the same way as in the “Substitute brick” menu, it should contain a

filtered list of words, displayed as graphical bricks. The list should be grouped

according to lemmas, and alphabetically-sorted (first sort the groups, then sort

the bricks inside each group).

Figure 12. Combining blocks with drag-and-drop interface

24

25

 Chapter 5

5. WordBricks: System Architecture

The current version of WordBricks is available for Android platform. It

relies on standard functionality of the Android framework, and uses the

capabilities of Android SDK classes to implement application logic [50].

Previously, each block was represented with a widget based on a customized

View class of the standard Android library [51]. However, nested blocks caused

inacceptable performance drops, so we had to rewrite the entire block rendering

functionality ourselves. The application draws all the blocks on the main view.

Shapes, colors and the content of the blocks are rendered according to their XML

definitions. Let us consider the system in more detail.

5.1 System Description

We designed the architecture of the mobile application by following the

process suggested in [75]. Android was the operating system of choice for

WordBricks due to its wide availability and openness [76].

5.1.1 WordBricks Package Structure

WordBricks is developed using the Java programming language. It relies on

the standard functionality of the Android framework. Thereby, the application

consists of the following components:

Java classes that are subclasses of the main Android SDK classes (View,

Activity) and Java classes that have no Android SDK ancestors, i.e. helper classes

for implementation of the application logic;

• the Android Manifest file;

26

• application resources and XML definitions of application GUI

layouts;

• exercise descriptions (XML files).

In terms of handling relationships between GUI and a logic supporting GUI,

the application architecture follows Model-View-ViewModel architectural

pattern [64].

5.1.2 Implementation of core functionality

In addition to “virtual lab” experience, WorkBricks is intended to contribute

to the overall gamification of the study process. Therefore, we tried to visualize

the grammar through plain and simple forms as much as possible. From a

technical point of view the above problem can be logically divided into two sub-

tasks: visualization of syntactic forms and semantic description of grammar

exercises.

1) Visualizing syntactic forms. Android application GUI is a tree of

instances of View subclasses, i.e. GUI widgets [65]. The View class is from the

Android framework and it is used for all Android GUI widgets. In the system,

every element of a sentence is represented with one brick of a certain shape and

color having a set of connectors for other sentence elements. These elements may

vary from one exercise to another, and may consist of individual words or

punctuation symbols, or arbitrary phrase fragments. According to the Android

framework, Brick objects displayed on WordBricks screen are defined as

subclasses of the View class. The GUI tree is normally defined with XML layout

files, and at the runtime expanded automatically into the tree of corresponding

objects. However, in our case our custom View of ViewBrick is created and added

to the existing GUI layer at runtime. This allows the user to create and delete

them at any time.

Brick width is calculated in accordance with a set of parameters. These

parameters are word length, empty connectors and non-empty connectors if they

are presented. Therefore, brick width is constantly changing in the process of

sentences construction, as illustrated in Fig. 8.

27

2) Describing grammar exercises semantics. As mentioned above, the

content of each individual brick varies from exercise to exercise. Therefore, each

exercise needs its own XML-defined set of word bricks. In other words, each

exercise is specified by an XML file with an independent 'vocabulary' of bricks. In

fact, this specification of the bricks is a description of the semantics of words and

semantic description of its use. The polysemy nature of words can be defined with

multiple XML sections.

5.2 Brick Description Format

The brick description document defines the content (words, attributes,

connectors) of all the bricks available in the given exercise. The format is

designed with simplification in mind. The basic assumption is that any word form

and any alternative set of attributes of the given word corresponds to a separate

brick. E.g., table and tables are separate bricks; am as in “I am a student” and am

as in “I am funny” are separate bricks, too (see Listing 1).

The following design decisions should be noted. Typically, a lemma is used

as is, but in some cases the author can choose an internal lemma to be different

from a “screen name” shown to the user. Therefore, we need a separate optional

screenlemma attribute. Some connectors can be made optional by adding the

optional attribute set to true. Currently we assume that each connector can be

present only once in a brick (so it is not possible to have two subjects or two

objects of the same verb). The lists of several objects or when/where/etc. should

be collapsed into one compound clause with special combinational bricks, but we

may revise this logic in the future.

Listing 1. XML description of the word devoured

<brick id="devoured_1" lemma="devoured" type="Verb phrase">

 <item type="brickConnector" connector="1" value="Noun phrase">

 <attrs

 case="common" person = "third" number="singular"/>

 <attrs

 case="nominative" person = "third" number="singular"/>

 </item>

 <item type="word">devoured</item>

 <item type="brickConnector" connector="2" value="Noun phrase">

 <attrs

 case="common" person = "third" number="singular"/>

 <attrs

28

 case="oblique" person = "third" number="singular"/>

 <attrs

 case="common" person = "second" number="singular"/>

 <attrs

 case="oblique" person = "second" number="singular"/>

 <attrs

 case="common" person = "third" number="plural"/>

 <attrs

 case="oblique" person = "third" number="plural"/>

 <attrs

 case="common" person = "second" number="plural"/>

 <attrs

 case="oblique" person = "second" number="plural"/>

 </item>

</brick>

5.3 Brick Onscreen Configuration Format

Some bricks present in the given exercise should be preloaded and shown on

the screen before the user starts interaction, so the author should have a method

to specify a certain initial onscreen brick structure. In the future, the same format

can be used to save user progress.

Bricks on the screen form a forest, so in order to save bricks onscreen

locations, we will need to save each root brick’s (x, y) coordinates as fractions of

the overall screen size (to accommodate the screens of any sizes and aspect

ratios). Coordinates should not be specified for non-root bricks since their

positions are defined by the positions of their parents. Probably, it makes sense to

allow omitting coordinates for root bricks, too, which will force the system to use

some automated placement algorithm.

The xml file simply lists all onscreen bricks. For each brick we specify its

parent (no parent in case of a root brick) and the connector it is attached to.

Connectors are addressed with their cardinal numbers or textual labels (see

Listing 2).

Listing 2. XML description of a sentence structure

<boc>

 <brick id="devoured_1" coords="0.37,0.1"/>

 <brick id="cat_1" parent="devoured_1" connector="1"/>

 <brick id="mouse_1" parent="devoured_1" connector="2"/>

 <brick id="the_1" parent="cat_1" connector="1"/>

 <brick id="little_1" parent="cat_1" connector="2"/>

29

 <brick id="a_1" parent="mouse_1" connector="1"/>

 </boc>

Such description defines the content (words, grammatical attributes, and

connectors) for all the blocks available in the given exercise. The format is

designed to be simple and easy to use. The basic assumption is that any word

form and any alternative set of attributes of the given word is described as a

separate block. The final section of the XML file describes the exercises, and their

expected solutions. Thus, the teacher needs to create an XML document with the

description of words, syntactic forms and attributes with connectors to create a

new exercise or a subset of language grammar for student experiments. The

shapes of the blocks should are developed considering the most frequent

combinations of syntactic phrases to further emphasize the correct order of the

words with smooth transitions (see Fig. 13). However, the teacher can change the

shapes to better adapt WordBricks to another language or lesson. We are also

planning to create a graphical tool to design XML rules without actually having to

write XML.

Figure 13. Block shapes reflect the natural flow of words in a sentence

When the user attempts to insert a brick into a connector, the system checks

whether the connector’s part of speech and the brick’s part of speech do match. If

parts of speech are the same, attributes are being checked next. If the attribute

list of the connector includes the attribute list of the brick, then the brick is

inserted into the connector successfully. Moreover, it does not matter if the brick

has a dependent brick or not. The order of brick connection actions is also not

important.

5.4 Interactions Between WordBricks Components

The scheme of the general structure and interaction of components of the

application in a simplified form is shown in Fig. 14. The main steps of interaction

are as follows.

30

The user can select words from the vocabulary exercises and add them to the

screen (item (1) on the Fig. 14). Descriptions of the corresponding bricks are

retrieved from the XML exercise file (item (2) on the Fig. 14). The descriptions

are then parsed and stored in the class Brick instance (item (3) on the Fig. 14).

After that, a new element of BrickView class is added and displayed on the

screen (item (4) on the Fig. 14).

31

Figure 14. Scheme of the structure and interaction of components of WordBricks

32

5.5 Responsive Design of WordBricks GUI

The Start Activity (item (5) on the Fig. 14) is a list of chapters of the

textbook. After selecting the exercise, the user goes to the main screen of the

application. The user interface of the main Activity (item (6) on the Fig. 14) is

a standard Navigation Drawer (item (7) on the Fig. 14) recommended from the

official Google documentation [66]. It is used for switching fragments of the

working area (item (8) on the Fig. 14).

In WordBricks, the Drawer on the left part of the screen allows the user to

switch between the exercises. Working area of the Blackboard is implemented

through a Fragment class from the Android framework.

New bricks can be added using the floating action button, located in the

bottom right corner of the application screen. Editing or deleting a block is

performed by double-clicking on the block. In addition, this can be done via the

Action Bar.

Blackboard: The user of the WordBricks can move bricks and create

sentences by employing a drag-and-drop interface. Bricks can be connected in

any order. GUI contains color hints and pop-up information about words at the

bottom of the screen for convenience of the user.

Responsive design: Sizes of bricks are calculated dynamically according to

the screen resolution. Thus, the bricks look normally on the screens of any screen

size and density. Also, the application has an ability to zoom the screen of the

Blackboard for individual user settings. However, a horizontal orientation is

preferred since a relatively long sentences hardly fit the screen.

A number of technical and pedagogical challenges is caused by the

distinctive features of mobile platforms. The small mobile screen cannot display

the complete set of brick attributes, so we had to intentionally hide some of them,

and make the remaining attributes easy to see and understand. We also had to

support numerous possible user actions via limited tap interface, and ensure

proper auto-positioning and sizing of bricks.

33

5.6 Visualizing sentence structure

WordBricks visualizes sentence structure with a combination of nested

colored bricks of different shapes. Each brick is associated with a set of textual

attributes that unambiguously define the shape and the color of a brick. A brick

also contains a linear list of child items, consisting of words and connectors. A

word is a static predefined textual element, drawn on a brick background. Each

connector is a placeholder for a brick that forms a dependency relation with the

connector’s parent brick. Like bricks, connectors are associated with textual

attributes that define their shapes. From the technical point of view, the classes

for bricks and connectors are based on the standard Android framework (see Fig.

15). When a brick is inserted into a connector, the respective BrickView object is

placed on the corresponding ConnectorView object. This operation is possible

since both classes are inherited from the standard class RelativeLayout that

can work both as a graphical element, and as a drawing canvas holding other

View objects.

Figure 15. Class diagram of bricks visualization subsystem

A brick can be placed inside another brick’s connector if that connector’s

attributes form a subset of the set of brick attributes. Let us state once again that

child bricks are displayed inside the connectors of their parents, thus the whole

structure preserves the original linear form of a sentence. When WordBricks is

class BrickView

class View

class

RelativeLayout

class WordView

class Attribute

class ConnectorView

class WBView

List<BrickElement> children

List<Attribute> attrs

String name

String value

String word

List<Attribute> attrs

interface

BrickElement

34

used as a visualization module, it displays a static structure of already linked

bricks, corresponding to a user-supplied sentence.

Since WordBricks performs no linguistic processing of the input data, it can

be adapted to a variety of natural languages and grammar formalisms. This

design decision also makes it easy to use WordBricks as a visualization module

for any given sentence structure, properly encoded in compatible XML

documents. Each XML file corresponds to a single sentence and contains three

sections. Brick descriptions section defines the attributes, words and connectors

of each brick present in the given sentence.

5.7 Interoperation with Language Processing Modules

One of the primary design decisions in WordBricks was to enable full

control over pedagogical aims of individual exercises, which in practice means

teacher-specified rules of grammar and list of words, available in each exercise.

However, this approach requires a large amount of manual work for composing

XML rules and limits the students with a set of predefined words and rules, thus

reducing their options for open experiments with language grammar. To address

this problem, we are experimenting with elements of natural language processing

that automate the process of words-to-bricks conversion. Currently, there are two

scenarios for using these capabilities: 1) convert a whole user-supplied sentence

into a brick representation to make its structure clear; 2) convert individual user-

supplied words into bricks and add them into the current exercise. Unfortunately,

these scenarios rely on language-specific algorithms, so only English and Irish are

supported at the moment.

The basic idea of sentence visualization mode is to substitute handcrafted

bricks with bricks descriptions, generated with natural language processing

algorithms. In this mode, the system operates according to the following scenario:

1. The user inputs an arbitrary phrase or a sentence into the system.

2. The system uses natural language processing modules to tokenize the

supplied text into individual words and perform necessary linguistic

analysis of their features.

3. The system uses this information to build a brick structure.

35

4. The resulting structure is shown on the screen.

5. We should note three obvious drawbacks of this solution comparing

to handcrafting word bricks:

6. Natural language processing modules are language-specific, so we

have to provide a separate module for each supported language.

7. Language processing algorithms are imperfect, so the resulting

structure might actually be incorrect.

8. Automated algorithms produce a separate brick for each word, which

might not be the best choice for a particular situation from a

pedagogical point of view.

However, our experiments show that capability to visualize any arbitrary

phrases outweigh these shortcomings, and it should be investigated further in

practice.

Since natural language processing modules require to use specialized

libraries and large binary data files, it was decided to perform language

processing operations on a remote server, keeping the client side of WordBricks

lightweight. However, we might revise this architecture in the future. In the

present system, mobile WordBricks application processes specific XML

description of individual bricks. This description, in turn, can be supplied either

by the user (in form of predefined exercises) or by the server as a result of user

query.

Let us consider the case of visualizing arbitrary user-supplied

sentences [51]. When the user selects the option “Visualize sentence” in the main

menu, the application displays an input box prompting to provide any arbitrary

sentence. After the user taps the OK button, the application sends an HTTP GET

request to the server side. The server returns an XML document describing the

desired brick configuration to be displayed on the screen.

The server side (backend) is a Python CGI script, accessible via HTTP

interface (see Fig. 16). Most of linguistic processing is performed in external

executable modules, invoked by this script.

36

We consider the input to be individual sentences, thus there is no dedicated

sentence splitting stage. For Irish language our natural language processing

pipeline is based on open source Python-based NLTK platform [77] and owes

much insight to the substantial work of T. Lynn [78]. We also rely on the Irish UD

Treebank (IDT-UD), obtained by converting the original Lynn’s Irish Dependency

Treebank to the universal dependencies annotation scheme [79].

Figure 16. Architecture of the system

The processing pipeline includes the following steps (see Fig. 17 for English

language and Fig. 18 for Irish language).

Tokenization. The input sentence is divided into a number of tokens,

corresponding to individual words and punctuation marks of the sentence.

Tokenization is not a trivial process, since there are no simple and clear rules to

identify token boundaries. For example, most existing NLP modules expect

37

contracted constructions such as you’ll and don’t to be represented as separate

tokens (you/’ll, do/n’t). There are different approaches to independent semantic

units with spaces or dots inside, such as 10 000 or e.g.. The current tokenizer

uses a rule-based algorithm that respects most requirements of the subsequent

modules, and works correctly in most cases we deal with, though additional

evaluation would be useful.

In case of Irish language we follow the approach suggested by Lynn [78]:

first, the text is processed with a conventional rule-based English tokenizer, then

a set of Irish-specific rules is applied to treat contractions b', d', and m' as

separate tokens. In the original Lynn’s work, compound prepositions such as go

dtí are concatenated and treated as single tokens, but we do not do it to be

consistent with IDT-UD annotation.

Part of speech (POS) tagging. The purpose of this step is to mark the

tokenized sentence with part-of-speech tags. We use Penn Treebank tagset as a

de-facto standard for natural language processing [66]. Our tagger is based on the

maxent toolkit [67] that implements maximum entropy modeling technique [68].

The tagger first had to be trained on a sample tag-annotated corpus. We relied on

the manually annotated part of Open American National Corpus (it includes

around 500K words chosen from a large variety of sources) [69]. In our

experiments, the tagger exhibited 96.40% accuracy, comparable to the state of the

art.

To mark the tokenized sentence with part-of-speech tags for Irish language,

we trained NLTK’s built-in Perceptron Tagger [80] on the IDT-UD treebank

without any adjustments of default features. The resulting accuracy (verified by

splitting IDT-UD into 920-sentence training set and 100-sentence test set)

reached a value of 90.42%, which is close to the best attempt of Lynn (93.02%),

achieved for a twitter messages tagging task with more advanced tools.

Syntactic parsing. The sequence of tagged tokens is passed to the

dependency parser that converts the input into a dependency tree, providing the

output as a CoNLL-U-formatted text document [70]. Our parser is based on the

source code of Layer-Based Dependency Parser LDPar [71]. Similarly to our part-

38

of-speech tagger, this parser had to be trained on an dependency-annotated

corpus (a treebank). For this purpose, we used the WSJ section of Penn

Treebank, containing over 2 million words parsed for predicate-argument

structure [72]. The treebank had to be converted first into dependency structures

with a pennconverter tool [73]. The resulting accuracy can be considered

acceptable: 84.54% for unlabeled, and 83.28% for labeled parsing.

In case of Irish language following Lynn’s approach, we used MaltParser

[81], trained on IDT-UD, and tested the accuracy by splitting the treebank into

920/100-sentence training and test sets. Default settings yield lower performance

(LAS = 0.70) comparing to the values achieved by Lynn (0.74…0.79 in different

experiments). However, these values should be considered relatively rough

estimations due to small size of the test set.

XML generation. The final processing stage involves conversion of the

CoNLL-U data into the XML document supported by WordBricks. Since CoNLL-

U format contains all required information (word boundaries, part-of-speech

tags, and labeled syntactic dependencies), this operation is relatively

straightforward for both languages, and is performed by the main Python server

module.

39

Figure 17. Processing pipeline steps for the sentence The little cat devoured a
mouse

Raw data

The little cat devoured a mouse

The | little | cat | devoured | a | mouse

 The DT
little JJ
cat NN
devoured VBD
a DT
mouse NN

POS

tag

Tokenize

<brick id="the_1" lemma="the" type="Determiner">

 <item type="word">the</item>

</brick>

<brick id ="little_1" lemma="little"

 type="Adjective phrase">

 <item type="word">little</item>

</brick>

<brick id="cat_1" lemma="cat" type="Noun phrase"

 case = "common" person = "third"

 number = "singular">

<item type="brickConnector" connector="1"

 value="Determiner"/>

<item type="brickConnector" connector="2"

 value="Adjective phrase"/>

<item type="word">cat</item>

</brick>

… (see Appendix B)

XML

The DT DT 3 NMOD

little JJ JJ 3 NMOD

cat NN NN 4 SUB

devoured VBD VBD 0 ROOT

a DT DT 6 NMOD

mouse _ NN NN _ 4

 OBJ

Parse

Visualize

40

Figure 18. Processing pipeline steps for the sentence Bhí na hataí agam

Raw data

Bhí na hataí agam.

 Bhí | na | hataí | agam | .

 Bhí PastInd
na Art
hataí Noun
agam Prep
. .

1 Bhí PastInd 0 root
2 na Art 3 det
3 hataí Noun 1 nsubj
4 agam Prep 1 obl:prep
5 . . 1 punct

<brick id="Bhí_1" lemma="Bhí" pos="PastInd">

 <item type="word">Bhí</item>

 <item type="brickConnector" label="nsubj">

 <attrs pos="Noun"/>

 </item>

 <item type="brickConnector" label="obl:prep">

 <attrs pos="Prep"/>

 </item>

 <item type="brickConnector" label="punct">

 <attrs pos="."/>

 </item>

</brick>

<brick id="na_2" lemma="na" pos="Art">

<item type="word">na</item>

</brick>

...

XML

Parse

POS

tag

Tokenize

Visualize

41

Chapter 6

6. Classroom Experiments with WordBricks

In this section, we will discuss several experiments conducted to prove

feasibility of WordBricks. We wanted to evaluate its pedagogical merits in diverse

environments and scenarios. To the present day, three independent studies were

completed [89]. The first study was aimed to prove that WordBricks can be

helpful as a learning aid in a conventional English as a second language

classroom, taught for the students of computer science at a Japanese university.

The second study explored the capability of WordBricks to serve as a

demonstration tool used by the teacher to illustrate certain grammatical

phenomena. It was conducted with a different group of students at the same

university. The goal of the third study was to test WordBricks in a course of some

other language rather than English. WordBricks is, in principle, language-

independent, but the difficulty of expressing grammatical constructions with

specific types of visual blocks may vary. This study was performed at an Irish

language class of a junior school in Ireland.

As a part of each experiment, we also asked the users to provide their

feedback on the interface of WordBricks and their suggestions for its subsequent

development. Some of these suggestions were implemented in later versions of

the software.

The diversity of experimental setups and different approaches to evaluation

of the system is driven by the needs of teachers and students participating in our

studies. As mentioned above, WordBricks was initially designed as a tool for

“conscious learners” who would download the app and use it for their own

language learning needs (like Duolingo). However, teacher interest to the system

motivated us to do a series of pilot studies in classrooms, which would give us

42

some perspective on the possibility to use WordBricks in schools. Experimental

settings reflect the difference in educational goals. The teacher in the first study

was motivated to improve his students’ test scores. Many of these students were

intended to re-take a TOEIC exam after the course and wanted to see how their

results improve after the course. The teacher in the second study conducts a

dedicated English grammar course, based on traditional rules-and-exercises

textbook. He was looking for a way to provide better visualizations of

grammatical phenomena he had to explain (mostly in a non-interactive style).

The teacher in the third study deals with young learners of primary and junior

high school, having low motivation to study Irish language, which is widely

regarded as a compulsory subject with little practical utility. Thus, her primary

interest was to introduce interactive, game-like experiences that would increase

learners’ motivation to engage in educational activities. Therefore, our evaluation

concerns three loosely related categories of merits of the app: a) capability to

serve as a learning aid that facilitates better understanding of language grammar

(that results in higher test scores); b) capability to serve as a visualization tool for

illustrating particular grammatical points; c) capability to introduce game-like

elements that make educational process more enjoyable even if it does not

immediately translate to language proficiency.

6.1 WordBricks as a Learning Aid

Let us begin with a brief discussion of our first attempt to use a relatively

early version of WordBricks in a real classroom environment. Our goal was to

gather initial responses from the teacher and the students, and assess the

feasibility of the chosen approach (the study is described in more detail in [52]).

The participants of the experiment were two randomly chosen groups of

sophomore computer science students at a public Japanese university. The

students were enrolled in an elective advanced English grammar course and

ranged in age from 19 to 21 years. First, we conducted a diagnostic English

grammar test to ensure that the pre-course English level of both groups is very

similar (see Table 1). Approximately one half of these students have passed a

TOEIC test recently, their average score is 350 points.

43

To investigate whether WordBricks had any observable effect on students’

grammar learning, we adopted a pre-test/post-test design with a control group

and experimental group. In this setup, all 21 participants studied units 69 and 70

from the same English Grammar in Use textbook [41] with the same teacher.

Both units are about countable and uncountable nouns. However, Unit 70 seems

to be more demanding than introductory Unit 69, since it is dedicated to more

advanced grammartical points.

Table 1. Descriptive Statistics for Two Groups in Diagnostic Test

Group

Number of

participants (N)

Mean Test

Score (M)

Standard

deviation (SD)

Control Group (G1) 11 65.25 7.50

Experimental Group

(G2)
10

65.90 7.99

Though each group covered the same content and underwent the same

English grammar assessment procedures, the control group was taught with an

English grammar textbook in a traditional way (teacher-centered, grammar

focused), but the experimental group autonomously interacted with WordBricks

using Android-based tablets, given to each participant. Before the experiment,

control group members could familiarize themselves with WordBricks by solving

predesigned exercises, based on the first paragraphs of the Azar and Hagen’s

grammar book [40].

Based on the course textbook, we developed two sets of paper-based English

grammar tests to measure participants’ English grammar performance over two

course units. For Unit 69 pre-/post-test, participants were asked to correct given

sentences focusing on the nouns of the sentences. For Unit 70 pre-/post-test, they

were asked to complete sentences using correct noun form. According to the test

results, the experimental group showed greater improvement for both topics. The

average score of the experimental group (G2) increased from 15.90 to 24.20

points (out of 30 possible) for the first grammar topic, while the average score of

44

the control group (G1) increased from 15.18 to 21.00. Subsequently we conducted

a similar experiment with a group of 16 students who studied material of both

units 69-70 as a single block, where the average score improved from 17.13 to

20.69 for the control group, and from 17.94 to 20.31 for the WordBricks group

(see Table 2). These results show that our application can be as efficient as a

textbook, at least, in certain contexts. To compare groups’ achievements, we

performed a paired samples t-test using aggregate pre-test/post-test data of G1

and G2. The resulting values (0.00005 for G1, 0.00026 for G2) indicate that both

groups achieved statistically significant progress, and WordBricks (G1) group

performed better. These results show that our application can be as efficient as a

textbook, at least, in certain contexts.

Table 2. Results of the Quantitative Experiments

Exp. Test type
Group

Group
size

Mean
score

Std.
dev.

#1
Unit 69

pre-test G1 11 15.18 5.04

G2 10 15.90 4.43

post-test G1 11 21.00 5.80

G2 10 24.20 4.02

#2
Unit 70

pre-test G1 11 6.00 2.72

G2 10 4.20 2.57

post-test G1 11 9.18 4.17

G2 10 11.60 2.84

#3
Units
69-70

pre-test G1 8 17.13 3.80

G2 8 17.94 4.64

post-test G1 8 20.69 2.91

G2 8 20.31 2.83

Figure 19 illustrates progress achieved by individual students of both

groups. Test scores indicate the overall percentage of correctly accomplished

assignments. The diagrams show that in both groups teaching was effective, and

students in general were able to improve their test scores. Most progress was

made by the participants having lower initial scores, which is not surprising. It is

45

also noticeable that the difference in pre-test and post-test scores is larger in the

WordBricks group.

Figure 19. Progress of individual students in WordBricks and control groups.

46

6.2 WordBricks as a Demonstration Tool

Early classroom experiments with WordBricks made us believe that the

system can also be used by the teachers as a demonstration tool within the

framework of traditional grammar instruction. Currently, teachers often rely on

PowerPoint or similar presentation software to present grammatical concepts or

analyze the grammar of sentences [53]. However, PowerPoint presentations are

comprised of linearly organized display units (slides) [54], which might not be the

best way to present non-linear or hierarchical concepts to the audience. When

using presentation software, language teachers tend to use different fonts, colors

and shapes to visualize the grammar of a sentence. WordBricks alleviates this

need by providing ready-made building blocks for typical grammatical structures.

More importantly, as discussed above, their selection was based on established

theories of grammar [46] and pedagogically sound approaches [45]. Therefore,

there is no need for language teachers to create customized elements, saving their

time and providing advantage over more generic demonstration tools.

The possibility of using WordBricks as teacher’s aid was evaluated in a small

group of seven 4-year computer science undergraduate students (22-25 years of

age), enrolled in an Advanced English course at a Japanese public university. This

course is primarily focused on helping the students write a graduation thesis,

which is structurally similar to short research articles in computer science. As

part of this thesis writing course, useful sentence structures are discussed using

sentences extracted from an example research article [55]. We selected ten

sentences for division into WordBricks blocks to explain particular target

structures (see Table 3). Since the course was focused on larger structures than

individual words, we had to design custom WordBrick blocks that represent these

structures (see Fig. 20).

Since WordBricks is mobile software, we had to setup a virtual Android

machine using Oracle VirtualBox on a teacher’s Windows 10 laptop to display

presentations. In total, five presentations of 15-20 minutes were delivered. Each

presentation analyzed two new model sentences, and reviewed previous

sentences. Presentations consisted of the teacher constructing sentences using

the blocks while eliciting and explaining the reasons from the placement of each

47

block. Both suitable and unsuitable selections of blocks were made to provide

students with opportunity to contribute ideas. After each presentation, students

worked in pairs or threes to discuss the two new target structures. This was

followed up with a writing task in which students created a sentence related to

their research using the target structures.

As a result of this study, the teacher identified several strong features of

WordBricks, helpful in the context of demonstrating grammatical constructions.

In particular, he noted that automatic handling of colors, shapes, and

grammatical correctness of the resulting phrase helps to avoid errors during

presentation, when attention is focused on the audience rather than manipulating

elements using a mouse. The interactive nature of WordBricks that allows to

build sentences gradually, block by block, was also mentioned. Finally, it was

suggested that preparing demonstrations in WordBricks can be faster than using

other demonstrational software, though at the present moment it requires

manual XML file editing.

Figure 20. Model sentence #3 chunked into grammatical units

48

Table 3. Model Sentences and Target Structures

Sentence Target structure

1
Secret sharing is a method of encrypting a secret
into multiple pieces called shares so that only
qualified sets of shares can be employed to
reconstruct the secret.

A is a method of B so
that C can be D.

2
Audio secret sharing (ASS) is an example of
secret sharing whose decryption can be
performed by human ears.

A is an example of B
whose C can be D.

3
This paper examines the security of an audio
secret sharing scheme encrypting audio secrets
with bounded shares, and optimizes the security
with respect to the probability distribution used
in its encryption.

This A examines B and
optimizes C.

4 Figure 1 illustrates an example of two shares
and their superposition of a (2; 2)-threshold
VSS scheme.

Figure # illustrates X.

5 Desmedt et al. [4] proposed information-
theoretically secure schemes that encrypt a
binary string secret.

X [#] proposed A that
B.

6 It is conventional to use the mutual information
to measure the statistical independence between
random variables.

It is A to B.

7 Let P be a finite set, and let AQ and AF be subsets
of 2P.

Let A be B.

8 Table 1 summarizes the existing works on ASS
and VSS schemes as well as this work.

Table # summarizes A.

9 First, we provide a formal definition of ASS
schemes and a construction of the simplest ASS
scheme, namely a (2; 2)-threshold ASS scheme.

We provide A and B,
namely C.

10 The result indicates that the security is
optimized when the variance of the normal
distribution approaches infinity.

A indicates that B when
C.

6.3 WordBricks at an Irish Language Class

WordBricks was initially designed to be langauge-independent in a sense

that it is not based on presumptions, specific for certain particular language.

However, we wanted to have practical evidence that WordBricks is flexible

enough to handle non-English grammatical structures. Our current experiments

49

are focused on integrating WordBricks into Irish language classes at a junior

school in Ireland [56]. We also hope that gamification of Irish classes through

WordBricks would help to support learners’ interest in the subject. While the

Irish langauge is a complulsory subject in Irish schools, only a very small minority

(3%) of country’s population use Irish as a community and household language

[57]. These Irish speakers are bilingual (Irish/English) and there is no

communicative need to learn Irish [58]. The overwhelming majority of people in

Ireland (82%) believe that Irish should be taught in schools [59], but in practice

many learners tend to struggle both with the language and with lack of

motivation.

The current version of the Irish WordBricks application deals with some of

the basic constructs of Irish that learners must master yet find difficult due to

their structural difference from English. Most school teaching of Irish follows the

traditional model of books, workbooks and teacher-led activities. Irish

WordBricks introduces some game-like aspects by enabling learners to construct

their own grammatically correct sentences in Irish and reinforce Irish word order.

For example, the phrase “I have a hat” is “Tá hata agam” in Irish (literally, “Is a

hat with me”). Learners can find this structure difficult, as they may try to map

the Irish words onto the English word order, and WordBricks can help them to

see the real word connections in this phrase (see Fig. 21).

Figure 21. Irish “have” construction in WordBricks

50

We had no chance to perform an extensive evaluation of the system, but the

initial responses of the teachers, parents, and school pupils were positive. The

learners in general reported that they enjoyed working with the application,

found it easy to use, and would like to use it as a part of their homework. The

parents also enjoyed using the application and thought it was a very good idea to

have such an application for Irish. Several primary school teachers also reviewed

Irish WordBricks. They were positive about the application, and found its

interactive elements appealing for their students. Even though Irish WordBricks

was initially designed for a single user in an independent learning situation, the

teachers plan to use the application in their classrooms. The idea is to ask the

students to form sentences using the classroom computer so that all students can

see and become familiar with the grammatical structure being studied.

We conducted several pilot studies to find out how enjoyable is the system

for users, and the initial responses of the teachers, parents, and school pupils

were positive [88]. Let us briefly report the results of the studies of using

WordBricks in visualization mode, implemented in several different primary

school classes.

6.3.1 Evaluation in Irish Language Classroom First Study

The first study involved a mixed group of 46 school students, 8-12 years of

age. Our goal at this stage was to gather their initial impressions about the app

and understand possible directions of subsequent development. We asked the

students to play freely with the app, perform basic assignments, and analyze the

structure of several suggested sentences. Quantitative evaluation (See Table 4)

was carried out via anonymous student surveys. Naturally, we are aware that test

participants (especially young children) might be tempted to give “the right”

positive feedback, so the results should be treated with caution. However, the

teachers tried to explain them that both positive and negative comments are

highly welcome, as they help to improve the app.

The initial version of Irish WordBricks has been trialled by both parents and

young learners. The young learners reported that they enjoyed using the

application and they found it easy to use. They thought it would be useful for

learning Irish. Without prompting, one young learner suggested that there could

51

be more vocabulary words so students could make more interesting and longer

sentences (the initial version included a limited vocabulary so that learners could

focus on structure). The young learners suggested that the application could be

used for learning various types of sentences. When asked if they would use the

application out of school, they said they might and that they would like a new

topic each week. Initial feedback from parents has also been positive. Parents

whose children attend an Englishmedium participated in an Irish course for

parents. Some parents had spent 13 years learning Irish (in both primary and

secondary school), but had very limited mastery or recall of the language. There

were also several immigrant parents who had never studied Irish before, but they

were usually multilingual and were comfortable with other languages. The

parents enjoyed using the application and thought it was a very good idea to have

such an application for Irish. Several parents reported that they struggle to help

their children with their Irish homework and have tried in vain to find something

useful for them as parents to either revise their knowledge of Irish or learn it from

scratch in the case of immigrant parents. They thought the application would be

very useful for their children and would like their children to use it at home.

Several primary school teachers also reviewed Irish WordBricks. They have

extensive experience of teaching Irish and are very aware of the need to use

modern tools and techniques in (and outside) the classroom. They were positive

about the application and thought that it would be a useful tool in their

classroom. They liked the interactive element of the application and thought it

would appeal to their students. Even though Irish WordBricks was initially

designed for a single user in an independent learning situation, the teachers plan

to use the application in the classroom with their students. They will ask students

to form sentences using the classroom computer so that all students can see and

become familiar with the grammatical structure being studied.

52

Table 4. Summary of student responses in the first pilot study

Question Yes (%) No (%) A bit (%)

Did you enjoy the Irish WordBricks app? 95 0 5

Did you find the Irish WordBricks app easy to

use?

78 0 78

Do you think IWB helped you to learn Irish? 78 2 20

Would you like to use the Irish WordBricks

app at home?

56 2 42

6.3.2 Evaluation in Irish Language Classroom Second Study

The purpose of the second study was to test the applicability of WordBricks

in real classroom setting, i.e., when it is used to illustrate a particular language

phenomenon according to the plan of a lesson, and the app is primarily used by

the teacher rather than students.

The participants in this case represented two cohorts:

A. Two groups of 5th year school students (10-12 years of age), 44

participants in total. Had 7 years of Irish language education,

including 5 years of written Irish. Worked with five different

grammatical constructs over a five-week period.

B. Three groups of 3rd year school students (8-9 years of age), 75

participants in total. Had 5 years of Irish language education,

including 3 years of written Irish. Worked with three grammatical

constructs over a four-week period.

WordBricks was used by the teacher, who ran it from a desktop machine

with Android emulator installed. Each grammar topic was illustrated with two or

more example sentences, processed by the app. In general, user/app interaction

was kept at relatively low level, since primary school timetable and focus on

particular topics have to be tightly managed by the teachers, and each lesson lasts

for only 30 minutes.

53

Qualitative evaluation (see Table 5) was performed via anonymous student

surveys, teacher surveys and observation. Students filled out a questionnaire after

each session with the app. Since we found little differences between the cohorts,

the results we provide represent combined data.

Table 5. Summary of student responses in the second pilot study

Question Yes (%) No (%) A bit (%)

Did you find WB easy to use? 82 2 16

Did you think it helped you to learn Irish? 73 7 20

Would you like your teacher to use WB in

class?

81 5 14

Did you enjoy WB? 84 1 15

We recognize that the actual impact of WordBricks on language education

has to be reconfirmed with both quantitative and qualitative evaluations

involving larger groups. We must note, however, that such experiments are hard

to perform in the context of minority-language primary school classes, where

there are many variables outside our control (including differences in teaching

approaches, students abilities, textbooks used, and class size), and the total

number of learners is limited. Still, we consider the obtained results encouraging,

as they demonstrate the feasibility of our approach, serving as primary

motivation for subsequent work.

In this way we use WordBricks application as a visualization module that

can display a user-supplied sentence as a parse diagram. (see Fig. 22). This

sentence can be a part of an exercise or freely added by the user.

54

Figure 22. An example of how WordBricks application works with the Irish
language

6.4 User Suggestions

As one might expect, we also received numerous report about shortcomings

of the present version of our software. Some of them were related to particular

bugs or user interface inconsistencies that were later improved. Some users

suggested to turn WordBricks into a universal application, able to work on both

mobile and desktop operating systems, which is especially important for its use as

a demonstration tool. There were some specific requests such as “let the user save

the current block arrangement to return to the sentence later”. Other comments

reveal common needs of language learning software users in general, so we

believe that they deserve additional discussion.

It seems that certain fraction of students in any given group have natural

proclivity for teacher- and book-centered learning. They perceive mobile apps as

55

“not serious” types of learning aids, and often ask to make WordBricks more

“book-like”, for example, by following a traditional structure of sections,

containing explanations, examples, and exercises. Some of these students are also

sufficiently proficient, so they found WordBricks content irrelevant for their

knowledge. They also feel more comfortable when the application is designed as a

“textbook companion”, containing exercises strongly following the textbook

structure and vocabulary.

Likewise, certain users like WordBricks just for the sake of being a mobile

app, as they find appealing more “technological” way of learning a language. Such

people explained their positive attitude with responses such as “I like fiddling

with a tablet”, “WordBricks is like puzzle games, and I enjoy to study and play

games”.

Probably, the largest number of suggestions were related to the current

limited set of supported words and constructions. Users found the system too

restrictive, as it only implements predefined constructions taken from the

textbook units used in our experiments. Some users explicitly requested the

capability to add own words and rules for independent studies.

Another large portion of suggestions was directly related to gamification.

During the above described experiments, users had to deal with a “plain” version

of WordBricks implementing only the basic functionality of building up phrases

from blocks, and containing no explicit game-like features. However, they

immediately recognized potential for further gamification, and requested to

implement simple additions, such as victory fanfare sounds, scoring system, and

explicit user progression through goals and subgoals. This observation supports

our earlier note that mobile gaming is such a common leisure activity nowadays

so that the users often suggest moving the project further into this direction

themselves (we must note though that most of our testers are young people, more

likely to be engaged in gaming). Here we should also mention common requests

to implement a system of hints and other feedback mechanisms.

56

6.5 Open Challenges

It would be unbalanced to focus on WordBricks advantages without

discussing principal shortcomings of the present system. User interface

limitations, limited vocabulary or inadequate user feedback can be addressed, but

there are also harder challenges that should be discussed, as they highlight

inherent difficulty of natural language, and problems relevant to a wider range of

CALL systems.

Scalability issues. The present version of WordBricks assumes that the

user picks up blocks form a “tray” and moves them to the main application

window. Alternatively, a predefined set of blocks is assigned to a specific exercise,

so when the user opens the exercise, the corresponding blocks appear in the main

window. This approach is hardly applicable for large word lists, and organizing

words into classes according to their part of speech is not sufficient either. We are

working on a combination of word tray and text input interface to facilitate easier

search of words.

Unintuitive structures. Dependency grammars provide intuitive word-

linking rules for simple types of dependency, such as “subject-verb” or “noun-

property”. However, for certain structures these rules are often based on

conventions rather than on rigorous linguistic theory. They include relations

between words making up proper names (such as “Joe” and “Doe” in “John

Doe”); relations between the main and subordinate clauses; relations between the

words in phrasal verbs (such as “look up”); relations involving auxiliary words,

such as “have been doing”, and so on. Arguably, understanding sentence structure

is beneficial to the learner (explicit structural diagrams are used, e.g., in Richard

Webb’s 80/20 Japanese textbook [60]), but some of the present constructions

can be more confusing than helpful.

This situation can be improved to some extent by designing blocks

corresponding to separate logical entities rather than words. For example, we can

consider the construction “will have been” as an atomic block, thus removing the

need to examine the relations between words inside this entity. In fact, this

approach is in line with the original concept of dependency grammars described

57

by Lucien Tesnière, who distinguished words as syntactic elements from nuclei as

compound elements carrying the same role as words [61].

Interface/visualization constraints. Many blocks should have optional,

variable or dynamic list-like connectors, while the current system assumes that

blocks have predefined connectors, specified in the configuration. For example,

nouns can have optional associated properties (“[large] book”), the verb to be can

be used with a noun or an adjective as an object (“I am a student / I am funny”),

and many verbs can be linked with a number of indirect objects (“I bought a book

[where / when / why]”).

One way to handle such flexibility is to let the users to add, remove or

change block connectors while arranging sentences, if these changes do not

violate grammatical rules. In other words, the system will provide certain “basic”

blocks, and it will be a user’s responsivity to configure them properly. Such

method is adopted in Scratch. It provides a range of mathematical functions, such

as sin(x) or log(x), but the user sees only the sqrt(x) block in the tray. Other

functions are accessible via a drop-down list of the sqrt(x) block. However, we

must acknowledge that this approach will make user interface more complicated

and will introduce new required actions into sentence building.

In addition, as noted above, our current visualization subsystem supports

projective dependences only. However, so far we had no requirements to deal

with non-projective dependencies in practice.

Pedagogical considerations. One may feel compelled to use WordBricks

to encode a large number of specified rules of grammar. However, the flexibility

of natural language grammar lets the system to interpret certain constructions as

correct, while in practice they are most likely to be erroneous. Many “grammatical

rules” described in textbooks are actually dictated by semantics rather than

syntax. For example, English Grammar in Use [41] clearly states: “we do not use

the with names of people (‘Helen’, ‘Helen Taylor’, etc.)”. However, a book on

advanced grammar actually provides a case where the is used to disambiguate the

subject of speech: “that’s not the Stephen Fraser I went to school with” [62].

Similarly, rules related to the choice of past vs. present perfect tenses in English

58

often mention that the words already, yet, and just are used with present perfect

tense [41]. However, one may argue that they deal with semantics rather than

syntax. Syntactically, adverbs (such as already) can be used with any verb forms.

Finally, the student-produced sentence can be considered grammatical only with

the help of counter-intuitive interpretations, such as in the classic garden-path

sentence “The old man the boat” that relies on the meaning of “man” as “operate”

[63].

The teachers designing the blocks have to decide which constructions are

include and which are exclude, given the target level of learners. It is far more

likely that the beginners will erroneously use “the” with a person’s name rather

than do it correctly in few situations where it is acceptable. However, many cases

require deeper involvement of semantics, and thus are beyond the scope of

WordBricks.

59

Chapter 7

7. Discussion and Conclusion

7.1 Discussion

State-of-the art technologies have been used in language education for a

long time. One of the recent trends is the rise of gamified mobile apps for

language learning, supported by widespread reach of smartphones, and by the

rise of mobile gaming as a popular leisure activity. This allows application

developers to presume that many of their potential users are ready for game-like

activities, and even expect to experience them in non-game apps. Language

learning requires long-time commitment, and often involves going through

routine tasks that hardly can be considered entertaining, so reasonable attempts

to exploit human propensity for games should be supported. However, it might be

tempting to interpret this suggestion too literally and endeavor to develop a real

“educational game”, which in practice often turns out to be a substandard

educational tool, and a substandard game. Successful projects are typically

targeted at conscious learners and do not try to disguise themselves as “games”.

Instead, they implement certain game-inspired tricks that help the users to stay

on track.

In terms of content, most projects are based on traditional learning

materials, (such as texts for reading, audio- and videoclips, and textbook-style

explanations), and traditional exercise activities (quizzes, jumbled sentences / fill

the gap / translate phrases grammatical exercises). We believe that natural

language processing technologies are potentially able to support a variety of

innovative educational scenarios, not available with traditional learning

materials, but in practice few technologies are mature enough to reliably address

60

learners needs. For example, automated speech analysis is often criticized for

providing misleading feedback.

Our primary motivation for creating WordBricks was to explore certain

“technology-driven” educational scenarios that would make use of dedicated

technologies, specifically designed for a purpose of language learning. At the

same time, we tried to address the problem of technological limitations by

restricting the users with activities that can be reliably supported. For example, it

is nearly impossible to design a reliable grammar checker that would evaluate any

given sentence and find errors. However, it is possible to restrict the users with

the set of grammar rules and let them compose sentences that are considered

correct according to the rules. Our current experiment show potential of this

approach, and WordBricks is regarded highly both by teachers and learners.

However, the flexibility of human language and the lack of formalized grammar

rules presented in a textbook order makes the design of WordBricks exercises a

very nontrivial and challenging task. Fortunately, in many scenarios it is

sufficient to implement the structures that makes sense from pedagogical point of

view, which is only a subset of all grammatically correct constructions. These

considerations give us motivation to continue experiments.

7.2 Conclusion

In this work, we have briefly discussed the rising gamification of language

learning via mobile apps and introduced our work-in-progress system

WordBricks, targeted for natural language grammar acquisition. WordBricks

allows the users to combine words into sentences using Scratch-inspired “blocks

and connectors” approach that prevents them to form ungrammatical

constructions. Currently, the system supports three primary use cases:

1) as an “open lab” for free experiments with language grammar structures;

2) as an exercises platform to be used in combination with a grammar

textbook;

3) as a demonstration tool for a teacher.

We are evaluating WordBricks in diverse settings, involving different

educational goals, student profiles, and different target languages. Our first

61

experimental setup confirmed that the system was able to help students to

improve their English grammar test scores within the context of a dedicated

grammar course. The second study demonstrated the capability of WordBricks to

serve as a handy visualization mechanism of particular grammatical

constructions in a primarily non-interactive lecture-based course. The third study

emphasized user enjoyment and game-like elements of the app, appealing to

young learners with low motivation to learn a language, taught as a compulsory

school subject.

We are evaluating WordBricks in diverse settings, involving different

student profiles and different target languages. Our evaluation shows that the

chosen approach is regarded positively by all involved parties. Students also feel

game potential in the app, and request for more game-like features, such as the

ones found in Duolingo. Implementing them is our primary goal. At the same

time, we have to admit that even formal adherence to textbook grammar cannot

hide the whole degree of complexity of natural language. Grammar rules often

rely on vaguely defined categories, semantics, and general knowledge, and thus

can be hard to implement in WordBricks. Furthermore, the system of blocks

provides an impression that all construction are “equal” in a sense that they are

equally correct according to the rules of grammar. However, in practice from a

didactical point of view it might be preferable to stick to fewer rules, and to

introduce less commonly used constructions at later stages.

To extend current experiments, we are also working on an improved and

simplified version of XML format, describing blocks and block linkage rules.

Ultimately, we are planning to make this process accessible to a wider audience of

educators and language learners. In general, we hope to see more works in

technology-driven language education, and more apps implementing innovative

approaches to facilitate second language acquisition.

We also want to emphasize that despite obvious shortcomings, the use of

automated natural language processing is perhaps among few realistic ways to

create language learning apps for less commonly taught languages. Creating high-

quality educational materials takes substantial efforts, so there is no surprise that

62

they are primarily focused on languages with high demand and wide potential

user base.

Current experimental versions of Irish WordBricks with NLP server and

with preconfigured exercises are available on Google Play:

https://play.google.com/store/apps/details?id=mprain.wordbricks

https://play.google.com/store/apps/details?id=mprain.basicenglishgrammar

The source code repository is located at

https://repo.rt247a.ddns.me/MobileWB

https://play.google.com/store/apps/details?id=mprain.wordbricks
https://play.google.com/store/apps/details?id=mprain.basicenglishgrammar
https://repo.rt247a.ddns.me/MobileWB

63

Bibliography

[1] D. Khampusaen, “Past, Present and Future: From Traditional Language

Laboratories to Digital Language Laboratories and Multimedia ICT Suites,”

in Tenth International Conference on eLearning for Knowledge-Based

Society, 2013, pp. 12–13.

[2] W. Decoo, “On the mortality of language learning methods,” L. Barker

Lecture, 2001.

[3] Z. H. Morford, B. N. Witts, K. J. Killingsworth, and M. P. Alavosius,

“Gamification: the intersection between behavior analysis and game design

technologies,” The Behavior Analyst, vol. 37, no. 1, pp. 25–40, 2014.

[4] AdMob, Six Essential Tips for App Developers. Available:

https://www.thinkwithgoogle.com/advertising-channels/apps/six-

essential-tips-for-app-developers.

[5] A.-M. Lavandier, Mobile Gaming is Huge…and it’s Staying: Rise of the

Casual Gamer. Available: https://medium.com/the-nerd-castle/mobile-

gaming-is-huge-and-its-staying-rise-of-the-casual-gamer-12a07333df66.

[6] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design

elements to gamefulness: defining gamification,” in Proceedings of the 15th

international academic MindTrek conference: Envisioning future media

environments, 2011, pp. 9–15.

[7] S. Chen, Facing Edutainment’s Dark Legacy. Available:

http://www.gamesandlearning.org/2016/01/25/facing-edutainments-dark-

legacy/.

[8] P. Sweetser and P. Wyeth, “GameFlow: a model for evaluating player

enjoyment in games,” Computers in Entertainment (CIE), vol. 3, no. 3, p. 3,

2005.

[9] Y. Long and V. Aleven, “Gamification of joint student/system control over

problem selection in a linear equation tutor,” in International Conference

on Intelligent Tutoring Systems, 2014, pp. 378–387.

[10] J. Dolonen and A. Kluge, “Algebra Learning through Digital Gaming in

School,” in 11th International Conference on Computer Supported

Collaborative Learning, 2015, pp. 252–259.

[11] I. Bogost, Persuasive Games: Exploitationware. Available:

https://www.gamasutra.com/view/feature/134735/persuasive_games_expl

oitationware.php.

[12] M. Robertson, Can't Play, Won't Play. Available:

http://www.hideandseek.net/2010/10/06/cant-play-wont-play.

[13] E. Farmer, J. van Rooij, J. Riemersma, and P. Jorna, Handbook of

simulator-based training: Routledge, 2017.

64

[14] M. Levy, Computer-assisted language learning: Context and

conceptualization. Oxford [u.a.]: Clarendon Press, 1997.

[15] D. Chun, R. Kern, and B. Smith, “Technology in language use, language

teaching, and language learning,” The Modern Language Journal, vol. 100,

no. S1, pp. 64–80, 2016.

[16] P. Hubbard, Survey of unanswered questions in Computer Assisted

Language Learning. Stanford University. Available:

http://www.stanford.edu/~efs/callsurvey/index.html.

[17] V. Santos, “Rosetta Stone Portuguese (Brazil) levels 1, 2, & 3 Personal

Edition Version 4 (TOTALe),” Calico Journal, vol. 29, no. 1, pp. 177–194,

2011.

[18] B. Lewis, Review of Rosetta Stone: Detailed and honest look at latest

version (TOTALe). Available: https://www.fluentin3months.com/rosetta-

stone-review/.

[19] L. Amaral, D. Meurers, and R. Ziai, “Analyzing learner language: towards a

flexible natural language processing architecture for intelligent language

tutors,” Computer Assisted Language Learning, vol. 24, no. 1, pp. 1–16,

2011.

[20] J. W. Heisig, Remembering the kanji. Honolulu: University of Hawaiʻi

Press, 2011.

[21] G. H. Gamage, “Perceptions of kanji learning strategies,” Australian Review

of Applied Linguistics, vol. 26, no. 2, pp. 17–30, 2003.

[22] M. K. Foti and J. Mendez, “Mobile learning: how students use mobile

devices to support learning,” Journal of Literacy and Technology, vol. 15,

no. 3, pp. 58–78, 2014.

[23] J. Gikas and M. M. Grant, “Mobile computing devices in higher education:

Student perspectives on learning with cellphones, smartphones & social

media,” The Internet and Higher Education, vol. 19, pp. 18–26, 2013.

[24] R. Draycott, Gamification is the key to Duolingo success says product

manager Gilani at Canvas conference. Available:

http://www.thedrum.com/news/2017/10/26/gamification-the-key-

duolingo-success-says-product-manager-gilani-canvas-conference.

[25] D. R. Bogdan, “Duolingo as an “Aid” to Second-language Learning. An

Individual Case Study,” 愛媛大学教育学部紀要, vol. 63, pp. 199–212, 2016.

[26] S. Kumar, My Gamified Language Learning Experience With Duolingo.

Available: https://elearningindustry.com/duolingo-gamified-language-

learning.

[27] de Castro, Ana Paula, da Hora Macedo, Suzana, and Bastos, Hélvia Pereira

Pinto, “Duolingo: an Experience in English Teaching,” Journal of

Educational & Instructional Studies in the World, vol. 6, no. 4, 2016.

65

[28] D. Huynh and H. Iida, “An Analysis of Winning Streak’s Effects in Language

Course of “Duolingo”,” Asia-Pacific Journal of Information Technology and

Multimedia, vol. 6, no. 2, 2017.

[29] A. Murdoch, Duolingo Review: The Quick, Easy and Free Way to Learn A

Language. Available: https://www.fluentin3months.com/duolingo/.

[30] S. Librenjak, K. Vučković, and Z. Dovedan, “Multimedia assisted learning of

Japanese kanji characters,” in MIPRO, 2012 Proceedings of the 35th

International Convention, 2012, pp. 1284–1289.

[31] R. C. Bailey and J. Davey, “Internet-based spaced repetition learning in and

out of the classroom: Implementation and student perception,” CELE

Journal, vol. 20, pp. 39–50, 2011.

[32] N. Walker, Hacking the Kanji: 2,200 Kanji in 97 Days. Available:

https://nihongoshark.com/learn-kanji/.

[33] E. Kidd, Learning Ancient Egyptian in an Hour Per Week with Beeminder.

Available: https://blog.beeminder.com/hieroglyphs/.

[34] G. H. Teninbaum, “Spaced Repetition: A Method for Learning More Law in

less Time,” J. High Tech. L, vol. 17, p. 273, 2016.

[35] J. Bitchener, “Evidence in support of written corrective feedback,” Journal

of second language writing, vol. 17, no. 2, pp. 102–118, 2008.

[36] J. Truscott, “The case against grammar correction in L2 writing classes,”

Language learning, vol. 46, no. 2, pp. 327–369, 1996.

[37] W. Christian et al, Open Source Physics.

http://www.opensourcephysics.org, 2013.

[38] D. Yaron, C. Ashe, M. Karabinos, K. Williams, and L. Ju, ChemCollective.

http://www.chemcollective.org, 2013.

[39] N. Nagata, “Robo-Sensei’s NLP-based error detection and feedback

generation,” Calico Journal, vol. 26, no. 3, pp. 562–579, 2009.

[40] B. Azar and S. Hagen, Basic English Grammar, 3rd Ed: Pearson Longman,

2005.

[41] R. Murphy, English Grammar in Use, 4th Ed: Cambridge University Press,

2012.

[42] S. D. Krashen, Explorations in language acquisition and use: Heinemann

Portsmouth, NH.

[43] M. Resnick et al, “Scratch: Programming for All,” Commun. ACM, vol. 52,

no. 11, pp. 60–67, 2009.

[44] D. Gooding, Experiment and the making of meaning: Human agency in

scientific observation and experiment: Kluwer Academic Publishers

Dordrecht, 1990.

66

[45] S. Ebbels, “Teaching grammar to school-aged children with specific

language impairment using shape coding,” Child Language Teaching and

Therapy, vol. 23, no. 1, pp. 67–93, 2007.

[46] R. Debusmann, “An introduction to dependency grammar,” Hausarbeit fur

das Hauptseminar Dependenzgrammatik SoSe, vol. 99, pp. 1–16, 2000.

[47] M.-C. de Marneffe and C. D. Manning, “Stanford typed dependencies

manual,” Stanford University, 2008.

[48] M. Mozgovoy and R. Efimov, “WordBricks: a virtual language lab inspired

by Scratch environment and dependency grammars,” Human-centric

Computing and Information Sciences, vol. 3, no. 1, pp. 1–9, 2013.

[49] J. Havelka, “Beyond projectivity: Multilingual evaluation of constraints and

measures on non-projective structures,” in 45th Annual Meeting of the

Association of Computational Linguistics, 2007, pp. 608–615.

[50] M. Purgina, M. Mozgovoy, and V. Klyuev, “Developing a Mobile System for

Natural Language Grammar Acquisition,” in Dependable, Autonomic and

Secure Computing, 14th Intl Conf on Pervasive Intelligence and

Computing, 2nd Intl Conf on Big Data Intelligence and Computing and

Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl C, 2016, pp.

322–325.

[51] M. Purgina and M. Mozgovoy, “Visualizing Sentence Parse Trees with

WordBricks,” in Cybernetics (CYBCONF), 2017 3rd IEEE International

Conference on, 2017, pp. 1–4.

[52] M. Park, M. Purgina, and M. Mozgovoy, “Learning English Grammar with

WordBricks: Classroom Experience,” in Proceedings of the 2016 IEEE

International Conference on Teaching and Learning in Education, 2016.

[53] P. J.-H. Hu, T. H. K. Clark, and W. W. Ma, “Examining technology

acceptance by school teachers: a longitudinal study,” Information &

management, vol. 41, no. 2, pp. 227–241, 2003.

[54] D. K. Farkas, “Explicit structure in print and on-screen documents,”

Technical communication quarterly, vol. 14, no. 1, pp. 9–30, 2005.

[55] S. Washio and Y. Watanabe, “Security of audio secret sharing scheme

encrypting audio secrets with bounded shares,” in Acoustics, Speech and

Signal Processing (ICASSP), 2014 IEEE International Conference on, 2014,

pp. 7396–7400.

[56] M. Purgina, M. Mozgovoy, and M. Ward, “Learning Language Grammar

with Interactive Exercises in the Classroom and Beyond,” Proceedings of the

9th International Conference on Computer Supported Education, 2017.

[57] Government of Ireland, Statement on the Irish language, 2006.

[58] I. Watson, “Irish language and identity,” in A New View of the Irish

Langauge, C. Nic Pháidín and S. Ó Cearnaigh, Eds.: Cois Life, 2008, pp.

66–75.

67

[59] M. Darmody and T. Daly, “Attitudes towards the Irish Language on the

Island of Ireland,” The Economic and Social Research Institute, 2015.

[60] R. Webb, 80/20 Japanese, 2016.

[61] S. Kahane, “If HPSG were a dependency grammar…,” Actes de TALN, pp.

22–24, 1996.

[62] M. Hewings, Advanced grammar in use: A self-study reference and

practice book for advanced learners of English : with answers, 3rd ed.

Cambridge, New York: Cambridge University Press, 2013.

[63] J. Guo, Google’s new artificial intelligence can’t understand these

sentences. Can you? Available:

https://www.washingtonpost.com/news/wonk/wp/2016/05/18/googles-

new-artificial-intelligence-cant-understand-these-sentences-can-you.

[64] J. Smith, “WPF Apps With The Model-View-ViewModel Design Pattern,”

MSDN Magazine, February 2009.

[65] Google Inc. and the Open Handset Alliance, API Guides: UI Overview.

Available: http://developer.android.com/guide/topics/ui/overview.html,

2016.

[66] Google Inc, Material Design Specification. Patterns – Navigation. Available:

https://www.google.com/design/spec/patterns/navigation.html, 2016.

[67] B. Santorini, “Part-of-speech tagging guidelines for the Penn Treebank

Project (3rd revision),” Technical Reports (CIS), Paper 570, University of

Pennsylvania, Department of Computer and Information Science, 1990.

[68] Z. Le, “Maximum entropy modeling toolkit for Python and C++,” Natural

Language Processing Lab, Northeastern University, China, 2004.

[69] A. L. Berger, V. J. Della Pietra, and S. A. Della Pietra, “A maximum entropy

approach to natural language processing,” Computational linguistics, vol.

22, no. 1, pp. 39–71, 1996.

[70] N. Ide, C. Baker, C. Fellbaum, and C. Fillmore, “MASC: The manually

annotated sub-corpus of American English,” in Proceedings of the Sixth

International Conference on Language Resources and Evaluation (LREC),

2008.

[71] J. Nivre, CoNLL-U Format. Available:

http://universaldependencies.org/format.html.

[72] P. Jian and C. Zong, “Layer-Based Dependency Parsing,” in PACLIC, pp.

230–239, 2009.

[73] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large

annotated corpus of English: The Penn Treebank,” Computational

linguistics, vol. 19, no. 2, pp. 313–330, 1993.

[74] R. Johansson and P. Nugues, “Extended Constituent-to-dependency

Conversion for English”, in Proceedings of NODALIDA 2007. Tartu,

Estonia, pp. 105-112, 2007.

68

[75] F. Salazar and M. Brambilla, “Tailoring Software Architecture Concepts and

Process for Mobile Application Development,” in Proceedings of the 3rd

International Workshop on Software Development Lifecycle for Mobile,

New York, NY, USA: ACM, 2015, pp. 21–24.

[76] B. A. Lucini, T. Hatt, C. Gardner, and B. Pon, “Mobile platform wars”, GSMA

Intelligence, 2014.

[77] S. Bird & E. Loper, “NLTK: the natural language toolkit”, in Proceedings of

the ACL 2004 on Interactive poster and demonstration sessions, p. 31.,

2004.

[78] T. Lynn, “Irish dependency treebanking and parsing”, Sydney, Australia,

Macquarie University, 2016.

[79] T. Lynn & J. Foster, “Universal dependencies for Irish”, in Celtic Language

Technology Workshop, pp. 79–92, 2016.

[80] M. Collins, “Discriminative training methods for hidden markov models:

Theory and experiments with perceptron algorithms”, in Proceedings of the

ACL-02 conference on Empirical methods in natural language processing-

Volume 10, pp. 1–8, 2002.

[81] J. Nivre, J. Hall & J. Nilsson, “Maltparser: A data-driven parser-generator

for dependency parsing”, in Proceedings of LREC, vol 6, pp. 2216–2219,

2006.

[82] D. Larsen-Freeman, “Grammar: Rules and Reasons Working Together”,

ESL Magazine, 3(1), 10–12, 2000.

[83] D. Larsen-Freeman, “Research into practice: Grammar learning and

teaching”, Language Teaching, 48(2), 263–280, 2015.

[84] G. Jean & D. Simard, “Grammar learning in English and French L2:

Students’ and teachers’ beliefs and perceptions”, Foreign Language Annals,

44(4), 465–492, 2011.

[85] M. H. Long, “Focus on form: A design feature in language teaching

methodology”, Foreign language research in cross-cultural perspective,

2(1), 39–52, 1991.

[86] N. Shintani, S. Li, & R. Ellis, “Comprehension-based versus production-

based grammar instruction: A meta-analysis of comparative studies”,

Language learning, 63(2), 296–329, 2013.

[87] T. Pica, “Classroom learning, teaching, and research: A task-based

perspective”, The Modern Language Journal, 89(3), 339–352, 2005.

[88] M. Ward, M. Mozgovoy & M. Purgina, “Can Word Bricks Make Learning

Irish More Engaging For Students?”, International Journal of Game-Based

Learning, in press, 2018.

[89] M. Purgina, M. Mozgovoy, J. Blake, “WordBricks: Mobile Technology and

Visual Grammar Formalism for Gamification of Natural Language Grammar

Acquisition”, Journal of Educational Computing Research, in press, 2019.

69

Appendix A. Sample Irish Exercise

Description: Irish uses bí + noun + prep + (optional article) + noun to

state where something is located. There are several different words used include

‘ar’ (on), ‘sa’ (inside), ‘in aice leis an’ (beside). The task is to drill such

constructions in interrogative sentences.

Pattern Example

to-be subject prep-phrase. Tá hata ar an mbord.

Is hat on the table.

Tá hata sa bhosca.

Is hat in the box.

Tá hata in aice leis an gcathaoir.

Is hat beside the door.

Bricks Required:

Group: bí, POS: verb

Word: Tá, Bhí, Níl, Ní raibh

Post-conn 1: noun or pronoun with any attributes

Post-conn 2: prep-phrase with any attributes

POS: noun

Word: caipín, laithróid, leabhar, rothar, madra

Group: prep, POS: prep-phrase

Word: ar an

Post-conn: noun with eclipsis

Word: sa

Post-conn: noun with lenition

Word: in aice leis an

Post-conn: noun with eclipsis

70

Group: noun with eclipsis

Word: urlár, mbord, teilifís, mballa, tolg, mbosca, gcathaoir, gclog, mála, bhfuinneog,

gclár dubh

Group: noun with lenition

Word: seomra, chúinne, phictiúr, bhosca, chupán, mhála, seomra suí

Exercises: write sentences like “Tá, leabhar, ar an, mbord”.

XML file:

<?xml version="1.0" encoding="utf-8"?>

<task rule = "Example 1">

 <exercise>

 <!-- An bhfuil hata ag an madra? -->

 <unit brick = "An bhfuil with pron-phrase"/>

 <unit brick = "hata"/>

 <unit brick = "ag with noun"/>

 <unit brick = "an"/>

 <unit brick = "madra"/>

 <unit brick = "?"/>

 </exercise>

 <type neme = "Determiner">

 <brick name="an" type="Determiner" used_with = "singular">

 <item type="text" value="an"/>

 </brick>

 <brick name="na" type="Determiner" used_with = "plural">

 <item type="text" value="na"/>

 </brick>

 <brick name="∅" type="Determiner" used_with_1 = "singular"
 used_with_2 = "plural" used_with_3 = "uncountable">

 <item type="text" value=""/>

 </brick>

 </type>

 <type neme = "Sentence">

 <brick name="?" type="Sentence">

 <item type="brickConnector" value="Verb phrase"/>

 <item type="text" value=" ?"/>

 </brick>

 </type>

 <type neme = "Verb">

 <brick name="An bhfuil with pron-phrase" type="Verb phrase"

 form = "An bhfuil">

 <item type="text" value="An bhfuil"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="nominative" case_2="common"

71

 person = "third" number_1="singular" number_2="plural"

mutation = "unchanged" />

 <item type="brickConnector" value ="Pron phrase"/>

 </brick>

 <brick name="An bhfuil with prep-phrase" type="Verb phrase"

 form = "An bhfuil">

 <item type="text" value="An bhfuil"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="nominative" case_2="common"

 person = "third" number_1="singular" number_2="plural"

 mutation = "unchanged" />

 <item type="brickConnector" value ="Prepositional phrase"/>

 </brick>

 <brick name="An raibh with pron-phrase" type="Verb phrase"

 form = "An raibh">

 <item type="text" value="An raibh"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="nominative" case_2="common"

 person = "third" number_1="singular" number_2="plural"

 mutation = "unchanged" />

 <item type="brickConnector" value ="Pron phrase"/>

 </brick>

 <brick name="An raibh with prep-phrase" type="Verb phrase"

 form = "An raibh">

 <item type="text" value="An raibh"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="nominative" case_2="common"

 person = "third" number_1="singular" number_2="plural"

 mutation = "unchanged" />

 <item type="brickConnector" value ="Prepositional phrase"/>

 </brick>

 </type>

 <type neme="Names">

 <brick name="Seán" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="Seán"/>

 </brick>

 <brick name="Áine" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="Áine"/>

 </brick>

 <brick name="Liam" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="Liam"/>

 </brick>

 <brick name="Máire" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="Máire"/>

 </brick>

 <brick name="Róisín" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="Róisín"/>

 </brick>

 <brick name="Mamaí" type="Noun phrase"

 case = "common" person = "third" number = "singular"

72

 mutation = "unchanged" >

 <item type="text" value="Mamaí"/>

 </brick>

 <brick name="Daidí" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="Daidí"/>

 </brick>

 </type>

 <type neme = "Verbal Noun">

 <brick name="rith" type="Verbal Noun">

 <item type="text" value="rith"/>

 </brick>

 <brick name="ithe" type="Verbal Noun">

 <item type="text" value="ithe"/>

 </brick>

 <brick name="ól" type="Verbal Noun">

 <item type="text" value="ól"/>

 </brick>

 <brick name="siúl" type="Verbal Noun">

 <item type="text" value="siúl"/>

 </brick>

 <brick name="gáire" type="Verbal Noun">

 <item type="text" value="gáire"/>

 </brick>

 <brick name="léamh" type="Verbal Noun">

 <item type="text" value="léamh"/>

 </brick>

 <brick name="súgradh" type="Verbal Noun">

 <item type="text" value="súgradh"/>

 </brick>

 <brick name="téascáil" type="Verbal Noun">

 <item type="text" value="téascáil"/>

 </brick>

 <brick name="rothaíocht" type="Verbal Noun">

 <item type="text" value="rothaíocht"/>

 </brick>

 <brick name="scátáil" type="Verbal Noun">

 <item type="text" value="scátáil"/>

 </brick>

 </type>

 <type neme = "Pron-phrase">

 <brick name="ag with noun" type="Pron phrase" form = "ag">

 <item type="text" value="ag"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="nominative" case_2="common"

 person = "third" number_1="singular" number_2="plural"

 mutation = "unchanged" />

 </brick>

 <brick name="ag with verbal noun" type="Pron phrase" form =

"ag">

 <item type="text" value="ag"/>

 <item type="brickConnector" value="Verbal Noun"/>

 </brick>

 <brick name="ar - pron" type="Pron phrase" form = "ar">

 <item type="text" value="ar"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="nominative" case_2="common"

 person = "third" number_1="singular" number_2="plural"

 mutation = "unchanged" />

73

 </brick>

 <brick name="orm" type="Pron phrase" form = "ar">

 <item type="text" value="orm"/>

 </brick>

 <brick name="ort" type="Pron phrase" form = "ar">

 <item type="text" value="ort"/>

 </brick>

 <brick name="air" type="Pron phrase" form = "ar">

 <item type="text" value="air"/>

 </brick>

 <brick name="urithi" type="Pron phrase" form = "ar">

 <item type="text" value="urithi"/>

 </brick>

 </type>

 <type neme = "Preposition">

 <brick name="ar - preposition" type="Prepositional phrase">

 <item type="text" value="ar"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="oblique" case_2="common"

 person_1 = "first" person_2 = "second" person_3 =

"third"

 number_1="plural" number_2="singular"

 mutation = "eclipsis"/>

 </brick>

 <brick name="sa" type="Prepositional phrase">

 <item type="text" value="sa"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="oblique" case_2="common"

 person_1 = "first" person_2 = "second" person_3 =

"third"

 number_1="plural" number_2="singular"

 mutation = "lenition"/>

 </brick>

 <brick name="in aice leis" type="Prepositional phrase">

 <item type="text" value="in aice leis"/>

 <item type="brickConnector" value="Noun phrase"

 case_1="oblique" case_2="common"

 person_1 = "first" person_2 = "second" person_3 =

"third"

 number_1="plural" number_2="singular"

 mutation = "eclipsis"/>

 </brick>

 </type>

 <type neme = "Noun">

 <!-- Mutation: unchanged -->

 <brick name="ocras" type="Noun phrase" form = "ocras"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="text" value="ocras"/>

 </brick>

 <brick name="eagla" type="Noun phrase" form = "eagla"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="text" value="eagla"/>

 </brick>

 <brick name="fearg" type="Noun phrase" form = "fearg"

 case = "common" person = "third" number = "singular"

74

 mutation = "unchanged">

 <item type="text" value="fearg"/>

 </brick>

 <brick name="áthas" type="Noun phrase" form = "áthas"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="text" value="áthas"/>

 </brick>

 <brick name="brón" type="Noun phrase" form = "brón"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="text" value="brón"/>

 </brick>

 <brick name="hata" type="Noun phrase" form = "hata"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="text" value="hata"/>

 </brick>

 <brick name="hataí" type="Noun phrase" form = "hata"

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="hataí"/>

 </brick>

 <brick name="cóta" type="Noun phrase" form = "cóta"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="cóta"/>

 </brick>

 <brick name="mála" type="Noun phrase" form = "mála"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="mála"/>

 </brick>

 <brick name="ubh" type="Noun phrase" form = "ubh"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="ubh"/>

 </brick>

 <brick name="bláth" type="Noun phrase" form = "bláth"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="bláth"/>

 </brick>

 <brick name="bláthanna" type="Noun phrase" form = "bláth"

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="bláthanna"/>

 </brick>

 <brick name="scannáin" type="Noun phrase" form = "scannáin"

75

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="scannáin"/>

 </brick>

 <brick name="cartúin" type="Noun phrase" form = "cartúin"

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="cartúin"/>

 </brick>

 <brick name="bréagáin" type="Noun phrase" form = "bréagáin"

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="bréagáin"/>

 </brick>

 <brick name="banana" type="Noun phrase" form = "banana"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="banana"/>

 </brick>

 <brick name="bananaí" type="Noun phrase" form = "banana"

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="bananaí"/>

 </brick>

 <brick name="ceapairí" type="Noun phrase" form = "ceapairí"

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="ceapairí"/>

 </brick>

 <brick name="milseáin" type="Noun phrase" form = "milseáin"

 case = "common" person = "third" number = "plural"

 mutation = "unchanged">

 <item type="brickConnector" value="Determiner"

 used_with = "plural"/>

 <item type="text" value="milseáin"/>

 </brick>

 <brick name="caipín" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="caipín"/>

 </brick>

 <brick name="laithróid" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="laithróid"/>

 </brick>

 <brick name="leabhar" type="Noun phrase"

 case = "common" person = "third" number = "singular"

76

 mutation = "unchanged" >

 <item type="text" value="leabhar"/>

 </brick>

 <brick name="rothar" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="text" value="rothar"/>

 </brick>

 <brick name="madra" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "unchanged" >

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="madra"/>

 </brick>

 <!-- Mutation: eclipsis -->

 <brick name="urlár" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="urlár"/>

 </brick>

 <brick name="mbord" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="mbord"/>

 </brick>

 <brick name="teilifís" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="teilifís"/>

 </brick>

 <brick name="mballa" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="mballa"/>

 </brick>

 <brick name="tolg" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="tolg"/>

 </brick>

 <brick name="mbosca" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="mbosca"/>

 </brick>

 <brick name="gcathaoir" type="Noun phrase"

 case = "common" person = "third" number = "singular"

77

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="gcathaoir"/>

 </brick>

 <brick name="gclog" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="gclog"/>

 </brick>

 <brick name="mála" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="mála"/>

 </brick>

 <brick name="bhfuinneog" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="bhfuinneog"/>

 </brick>

 <brick name="gclárdubh" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "eclipsis">

 <item type="brickConnector" value="Determiner"

 used_with = "singular"/>

 <item type="text" value="gclárdubh"/>

 </brick>

 <!-- Mutation: lenition -->

 <brick name="seomra" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "lenition">

 <item type="text" value="seomra"/>

 </brick>

 <brick name="chúinne" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "lenition">

 <item type="text" value="chúinne"/>

 </brick>

 <brick name="phictiúr" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "lenition">

 <item type="text" value="phictiúr"/>

 </brick>

 <brick name="bhosca" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "lenition">

 <item type="text" value="bhosca"/>

 </brick>

 <brick name="chupán" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "lenition">

 <item type="text" value="chupán"/>

 </brick>

 <brick name="mhála" type="Noun phrase"

78

 case = "common" person = "third" number = "singular"

 mutation = "lenition">

 <item type="text" value="mhála"/>

 </brick>

 <brick name="seomra suí" type="Noun phrase"

 case = "common" person = "third" number = "singular"

 mutation = "lenition">

 <item type="text" value="seomra suí"/>

 </brick>

 </type>

</task>

Exercises within WordBricks GUI:

79

Appendix B. Sample XML Descriptions for

the Current WordBricks Version

HTTP Request: “the little cat devoured a mouse”

XML Result:

<?xml version="1.0" encoding="utf-8"?>

<wordbricks>

 <boc>

 <brick id="devoured_1" coords="0.37,0.1"/>

 <brick id="cat_1" parent="devoured_1" connector="1"/>

 <brick id="mouse_1" parent="devoured_1" connector="2"/>

 <brick id="the_1" parent="cat_1" connector="1"/>

 <brick id="little_1" parent="cat_1" connector="2"/>

 <brick id="a_1" parent="mouse_1" connector="1"/>

 </boc>

 <bdf>

 <brick id="cat_1" lemma="cat" type="Noun phrase"

 case = "common" person = "third" number = "singular">

 <item type="brickConnector" connector="1"

 value="Determiner"/>

 <item type="brickConnector" connector="2"

 value="Adjective phrase"/>

 <item type="word">cat</item>

 </brick>

 <type id="little_1" lemma="little" type = "Adjective">

 <brick name="little" type="Adjective phrase">

 <item type="word">little</item>

 </brick>

 </type>

 <brick id="mouse_1" lemma="mouse" type="Noun phrase"

 case = "common" person = "third" number = "singular">

 <item type="brickConnector" connector="1"

 value="Determiner"/>

 <item type="word">mouse</item>

 </brick>

 <brick id="devoured_1" lemma="devoured" type="Verb phrase">

 <item type="brickConnector" connector="1"

 value="Noun phrase">

 <attrs case="common" person = "third"

 number="singular"/>

 <attrs case="nominative" person = "third"

 number="singular"/>

80

 </item>

 <item type="word">devoured</item>

 <item type="brickConnector" connector="2"

 value="Noun phrase">

 <attrs

 case="common" person = "third" number="singular"/>

 <attrs

 case="oblique" person = "third" number="singular"/>

 <attrs

 case="common" person = "second" number="singular"/>

 <attrs

 case="oblique" person = "second" number="singular"/>

 <attrs

 case="common" person = "third" number="plural"/>

 <attrs

 case="oblique" person = "third" number="plural"/>

 <attrs

 case="common" person = "second" number="plural"/>

 <attrs

 case="oblique" person = "second" number="plural"/>

 </item>

 </brick>

 <brick id="a_1" lemma="a" type="Determiner">

 <item type="word">a</item>

 </brick>

 <brick id="the_1" lemma="the" type="Determiner">

 <item type="word">the</item>

 </brick>

 </bdf>

 <bcs>

 <brickshape shape="shape 1" color="red">

 <attrs>

 <attr>Noun phrase</attr>

 </attrs>

 </brickshape>

 <brickshape shape="shape 2" color="yellow">

 <attrs>

 <attr>Adjective</attr>

 </attrs>

 </brickshape>

 <brickshape shape="shape 3" color="blue">

 <attrs>

 <attr>Verb phrase</attr>

 </attrs>

 </brickshape>

 <brickshape shape="shape 4" color="orange">

 <attrs>

 <attr>Determiner</attr>

 </attrs>

 </brickshape>

 </bcs>

</wordbricks>

