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Abstract

With the availability of social media, its abilities and influence on people continues to in-
crease. It is being used for many purposes, such as communication with friends and business
partners, advertisement, news delivery, information spread, and so on. To support the analy-
sis of social media content, we developed EmoTwitter, a tool for emotional analysis of twitter
messages. Our experiments show that EmoTwitter is able to get tweets in arbitrary location and
extract tweets including specific emotions.

The purpose of this paper is to present EmoTwitter, a system for visualizing discussions and
emotions of Twitter users. First EmoTwitter can get tweets in real time over a specific geograph-
ical location. The system, given location information as input, streams users’ tweets posted in
real time using the Twitter APIL. In addition, using content analysis, it extracts and visualizes
the most frequent words and emotional content of the streamed tweets. Next EmoTwitter can
extract only tweets containing specific emotions from the acquired tweets. The system use NRC
word-emotion association lexicon and lexicon is annotated into eight categories according to
Pluthick’s eight basic emotions [1]]. EmoTwitter can describe emotions contained in tweets by
digitizing and graphing and extract tweets according to the annotation. Digitizing the emotions
makes it easy to know what kind of thoughts and feelings the user is tweeting, which is useful
for marketing and crime prevention.



Chapter 1

Introduction

1.1 Background and importance of emotional analysis on Twitter

Recently, many communication tools are used on the Internet, such as Facebook, Instagram,
Twitter, WhatsApp etc. Facebook and WhatsApp specialize in communication among acquain-
tances and specific communities. Instagram and Twitter are good at sharing information with
an unspecified group; the former uses pictures, the latter uses tweets. Both of these popular
services have hundreds of millions people users and huge amounts of information.

The reason why we chose Twitter is that Twitter has an environment in which it is easy to
create a strong emotional tweet and share information. Twitter originally developed as a tool
for information dissemination, and real-time property, openness, conversation are emphasized.
We think that tweets contain strong emotions and they have different meanings and values from
simple sentences. So accurate recognition of emotions is very valuable on Twitter. Twitter
is one of the most famous microblogs, having more than 30 million active users [2]]. Twitter
has also become an important tool for marketing. According to research, many users follow
some companies’ accounts and take action that are useful for companies [3]]. Onnit uses Twitter
for communication with users of its own products and for interaction with brand supporters.
With this, Onnit has succeeded in keeping the cost for acquiring customers to 40% of the target
amount [4]. This trend is expected to continue in the future. So tools for twitter analysis can
be of interest to sociologists and business analysts. Bollen et al. investigated whether measure-
ments of collective mood states, derived from a large Twitter feed, correlate with the value of
the Dow Jones Industrial Average (DJIA) over time [5]. Kireyev et al. said that they can obtain

valuable information for disaster response from disaster microblogging and also explain new
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CHAPTER 1. INTRODUCTION

clustering methods [6]. Lermen et al. extracted the active user’s SNS and examined how the
information is diffused on SNS [7]]. The ability to identify emotions and output text accurately
is important. Still now, it is difficult to read true emotions from sentences without information
such as facial expression or voice color of the companion. And many NLP dictionaries have
been developed and used according to that purpose [8]]. Specifically, they are designed to grasp
the customer’s review in marketing, predict the outcome in the political campaigns and identify
online antisocial behavior (e.g. cyberbullying). Ajao et al. surveyed a range of techniques ap-
plied to infer the location of Twitter users from inception to state-of-the-art. It explains that new
algorithm processing speed is fast and good for handling proper names and keywords such as

place names. [9].

1.2 EmoTwitter

EmoTwitter is a tool for emotional analysis of Twitter messages, created at the University
of Aizu [10]. It is written in C# with the support of several third-party libraries and supports
several types of text analysis. The most recent version of EmoTwitter is powered by Tweetinvi
library [[11]]. Tweetinvi is a NET C# library that allows developers to easily and reliably interact
with Twitter. When a user inputs a Twitter account name into a textbox, EmoTwitter displays the
retrieved tweets of the given user. We implemented some functionality with API support and
authentication by substituting a modern Twitter library and making an OAuth authentication
module [[12]. As described below, EmoTwitter realized various emotional analyses by acquiring
a large amount of data by streaming API and filtering by position information and emotional

value.

1.3 Objective

The goal of the research is to provide a tool that is easy to use and enables accurate emo-

LR I3

tional analysis on Twitter. EmoTwitter can decide parameters 8 emotions “joy”, “trust”, “fear”,
“surprise”, “sadness”, “disgust”, “anger”, “anticipation” and judgement of “positive” and “neg-
ative”. Together with word searches, it helps to know the feelings and thoughts of a person
related to a specific person or product. In this thesis, to show the ability of EmoTwitter to detect

emotions we analyzed a collection of tweets related to President Trump, who raised a lot of

emotional comments in the microblogosphere in recent months.
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Chapter 2

Related Works

There are two methods for emotion analysis: lexicon-based and machine learning (ML).
Dictionary-based approach is used to determine the polarity of sentences. SentiWordNet [13]]
and WordNet-affect contain words with polarity labels. Emotwitter uses NRC-Word-Emotion
Associations lexicon to deal with not only sensitive but also emotion. This lexicon was devel-
oped by S. Mohammad et al. [14], for example, “absolution” includes emotions joy and trust,
and sentiment is positive. “Abandon” includes the emotions of fear and sadness, and sentiment
is negative. ML technique can be used to use some features, including those from lexicons for
classification. Pennacchiotti et al automatically infered the values of user attributes such as po-
litical orientation or ethnicity [15] by leveraging observable information such as user behavior,
network structure and the linguistic content of the users Twitter feed.

Research on twitter tweets and emotion analysis has been actively conducted. Stefan et
al investigated how emotional elements included in political remarks affect retweet number
[16]. Jansen et al analyzed micro-blog postings containing branding comments, sentiments, and
opinions [17]. Although both are excellent evaluation methods, they do not have a GUI and
lack ease of use. As a study combining location information and emotion analysis by dictionary
data in Twitter, Marcus et al made application aggregating and visualizing microblogs for event
exploration [18]]. This research acquires location information obtained from the Google Map
API and makes positive and negative decision of surrounding tweet using Stanford CoreNLP.
Our research focuses on the development of a tool that can more easily and accurately analyze
emotion. Emotwitter has GUI to get tweets various places and feelings, deal with using NRC-

lexicon, and corresponds to more detailed analysis.
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Chapter 3

EmoTwitter Development

3.1 Streaming API

Twitter supports two kinds of APIs REST API and Streaming API. Figure and [3.2) are
comparisons of REST API and Streaming API. REST API is the most basic API to put on
replacement and reference of tweets, tweet, follow, searching past tweets etc. EmoTwitter was
using this API to get tweets before. Streaming API gives developers low latency access to
twitter’s global stream of tweet data. It is a big advantage of being able to acquire tweets
for EmoTwitter in real time, but what you can do compared with the REST API is limited. For
example, Streaming API can’t get past tweets. Either APIs use HTTP connection, but Streaming
API requires keeping a persistent HT'TP connection open [19]. When application deal with big
data, if application uses REST API, it takes time to download data, then displays and user may
get annoyed. But Streaming API downloads data and displays tweets at the same time. So
we think Streaming API is suitable than REST API to deal with big data and we decide to use
Streaming API. From these features, we use the REST API for the past tweets of certain people

and use the Streaming API to get real-time tweets.

3.2 Google Maps API

Google Maps API for .NET is a C# google Maps API interface for interacting with the
backend web service for Google Maps. EmoTwitter uses this API to display Google Maps by

web browser, search arbitrary location and get latitude and longitude.
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3.2. GOOGLE MAPS API

User HTTP server Twitter

User makes request to Server issues request Twitter issues AP|
website to Twitter's REST API response

Twitter issues AP
response
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Figure 3.1: REST API process
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Figure 3.2: Streaming API process
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CHAPTER 3. EMOTWITTER DEVELOPMENT

3.3 Get arbitrary location real-time tweets by Streaming API and

Google Maps API

EmoTwitter became to be able to search tweets in arbitrary area. This module uses Stream-
ing API and Google Maps API. EmoTwitter uses these API to be able to display arbitrary loca-
tion and get latitude and longitude of the location. First, user inputs location name that want to
search. Then click “Get SearchLocation” button, Google Maps starts display and gets latitude
and longitude of location to search. Search range is square area consists of 4 coordinates (lat-
itude+0.5mile, longitude+0.5 mile), (latitude+0.5 mile, longitude-0.5 mile), (latitude-0.5 mile,
longitude+0.5 mile) and (latitude-0.5 mile, longitude-0.5 mile). Next click “Start stream” and
“Show” button, EmoTwitter displays tweets of the people in this location in listbox. At the
same time tweets obtained are displayed in Word cloud. Figure [3.3] visualize tweets in and
around New York.

As an example that can effectively use this function, suppose you are trying to study some
local event (a football match, a concert, an earthquake, local elections). Then it makes sense
to gather local tweets only. Also there are many languages that share the same countries. You

might be interested in something UK-related and ignore Canada/US/Australia/etc.

3.4 Extraction of tweets including specific emotions

EmoTwitter uses NRC word-emotion association lexicon. This lexicon is annotated into
eight categories according to Plutchik’s eight basic emotions (joy, sadness, fear, anger, anticipa-
tion, surprise, disgust, and trust) and two sentiments (positive and negative) [20]. Each score in
the lexicon is a Boolean marker, denoting whether the given word belongs to a given emotion
category. When a word in a tweet matches in the lexicon, EmoTwitter marks that word with a
score of 1 within the matched emotion category, and when the word does not match any word in
the lexicon, EmoTwitter mark it with a score of 0 [10]. Emocategory» the score of the specific

emotions that the tweet contains can be expressed by the following formula.

EmOWordsCategory
Emow ordsau

EmOCategory = (3.1)

Emow ordsCategory 18 the number of words including emotion of category. Emow ordsAu 18

the number of words including either emotion.
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3.4. EXTRACTION OF TWEETS INCLUDING SPECIFIC EMOTIONS

Bottom left of Figure [3.3]is the module of emotional filter. Each numbers in boxes corre-
spond to the filter of emotion. These maximum values are 1.0 and the minimum values are 0.
EmoTwitter main module has two listboxes to store tweets. The left side stores all of the tweets
getting streaming API. The right side stores tweets extracted by emotional filter. Example in the
Figure 3.3 emotional filter allows only tweets that “positive” of Emocategory Value is 0.5 or
more. Click listbox item, Radar chart displays value of emotion in tweet. Figure [3.4]is Radar-
chart of tweet “Radical, Democratic, liberal, terrorists! Trump shuts down ginned-up liberal
‘uprising’ in three words”. This graph indicates that this tweet is from negative and includes
emotion of “anger” and a little “fear”” and “surprise”. Click “Write” button, EmoTwitter outputs
tweets in right side listbox in text file. Figure [3.3]is the dataset. Each tweets has 10 numbers

behind, in order “joy”, “trust”, “fear”, “surprise”, “sadness”, “disgust”, “anger”, “anticipation”,

“positive” and “negative” score.
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Figure 3.3: EmoTwitter main module
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CHAPTER 3. EMOTWITTER DEVELOPMENT
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Chapter 4

EmoTwitter evaluation and

demonstration

4.1 Case 1: Accuracy survey by questionnaire

We asked 10 collaborators to answer the questionnaire and confirmed the reliability of
EmoTwitter. Figure 4.1|is the questionnaire to confirm the accuracy of EmoTwitter. This ques-
tionnaire has 50 positive tweets and 50 negative tweets chosen at random judged by EmoTwit-
ter. Each questions has tweets, emotions judged that EmoTwitter is included in the tweet and
judgment of positive (P), negative (N). The judges were asked to choose answer, “Correct” or
“Incorrect”. Then we measured the reliability of the system by comparing it with the answer
result. In most tweets, we got a rating of over 72% correct, so EmoTwitter’s emotional analysis
has reliability.

Table [4.1] is the result of questionnaire about 4 tweets. Each column represents “Tweet”,
“Positive or Negative”, “Emotion included in that tweet judged by EmoTwitter”, “Correct vote”
and “Incorrect vote”. (1) and (2) are questions with the largest number of “Correct” votes. Short
tweets and tweets with pronounced emotional bias were found. Over 80% of the questions were
such a result. (3) and (4) are questions that “Incorrect” was more. Conspicuous tweets were
complicated with positive and negative words with the largest number of “Incorrect” votes.
Also tweets that interpretation is easy to change by individuals, and tweets that are difficult to
grasp accurate meanings only in the main text were conspicuous.

[Tweets text]

(1) Jumanji was abnormally VERY entertaining... went to see it with very low expectations

THE UNIVERSITY OF AIZU 9



CHAPTER 4. EMOTWITTER EVALUATION AND DEMONSTRATION

Here's how #GOPTax_Scam will hurt small businesses and their
employees. Thread k4. #DemForce [fear, sadness, anger, N] *

O ELW

O EULL &L

What if Anakin Liked Sand? Star Wars Theory [joy, trust,
anticipation, P] *

O ELW

O ELL AW

| think he probably got dirty on them. [disgust, N] *
O ELW

O EULL &N

Great, Jax and | both feel like garbage this christmas. [disgust,
N] *

O ELW
O ELL BN
Figure 4.1: Sample fragment of a questionnaire
Table 4.1: The result of questionnaire about 4 tweets
Tweet | Sentiment Emotion(s) Correct Incorrect
) Positive | joy, anticipation 9 1
2) Negative - 10 0
3) Positive trust 1 9
@) Positive trust, surprise 1 9
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4.2. CASE 2: EMOTIONAL ANALYSIS OF TWEET ON SPECIFIC WORDS

and was impressed.
(2) Not sure if it’s the jet lag or this cold but i cant freaking sleep !!
(3) Sometimes I feel like I have so much to say, but don’t always know how to say it.

(4) Can’t even imagine what George Carlin would have to say about Trump being president.

4.2 Case 2: Emotional analysis of tweet on specific words

We make use of an interesting use case to demonstrate and test EmoTwitter. The use case is
a feeling of tweets about a specific person and their tendency. We gathered positive and negative
tweets about Donald J. Trump and decided to explore the trend in and around New York. As
the reason for choosing him, he is the president of the United States of America and many
people have various opinion to him. Figure 4.2]is an example of Trump’s tweet. This tweet
is retweeted 10,486 times and there are 14,697 replies. Also we thought, he actively sends his
opinion by himself on Twitter and there are many people who moved emotions by him. In this
case, positive tweets were targeted for “positive” value were 0.5 or more. Similarly negative

tweets were targeted for “negative” value were 0.5 or more.

@ oo E=DF
With that being said, | have personally
directed the fix to the unmasking process
since taking office and today’s vote is
about foreign surveillance of foreign bad

guys on foreign land. We need it! Get
smart!

& RENSER

22:14 - 201818 11H

10,486¢F L)W — [~ 47,9084FML L2
DO O@HSL O
) 14697 171 1048 ) 47908 [

Figure 4.2: Donald J. Trump’s tweet

[The following trend was seen in positive tweets. ]

e Thanks to Trump
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CHAPTER 4. EMOTWITTER EVALUATION AND DEMONSTRATION

[trust = 0.5, surprise = 0.5, positive = 0.5]

(ex) The liberals have become unhinged. President Trump is showing real leadership and

MAGA!

[trust = 0.67, surprise = 0.33, positive = 0.67]
e Include word “president”

(ex) Our President is repulsive, and if you support the #taxbill but not necessarily Trump

because you stand to gain, then you too are repulsive.
[joy = 0.33, trust = 0.33, surprise = 0.33, anticipation = 0.33, positive = 0.67]

(ex) 90% of Trump’s success as President has derived from his doing the exact opposite
of what Obama did in every area.

[joy = 0.33, trust = 0.33, surprise = 0.33, anticipation = 0.33, positive = 0.67]
e Criticisms about Trump.

(ex) Yes trump has no ability to manage disasters; only to create them.
[joy = 0.25, trust = 0.25, surprise = 0.25, positive = 0.75]

(ex) @realDonaldTrump AMERICA WILL ALWAYS BE STRONG WITHOUT YOU
TRUMP! We don’t NEED YOU.

[trust = 0.5, surprise = 0.5, positive = 0.5]
[The following trend was seen in negative tweets.]
e A direct bad mouth to Trump.

(ex) Trump is —(dirty words) guy. His behavior analyzed for itself is just plane bizarre.
Like his habits.
[surprise = 0.5, sadness = 0.5, anger = 0.5, negative = 0.5]

(ex) Well Trump, Merry Christmas! You destroyed the GOP & are too stupid to acknowl-
edge it!
[joy = 0.25, fear = 0.25, surprise = 0.25, sadness = 0.25, anger = 0.5, positive = 0.25,

negative = 0.5]

e Dissatisfaction with him

THE UNIVERSITY OF AIZU



4.3. TWEET TREND DERIVED FROM WORDCLOUD ABOUT TRUMP

(ex) TRUMP nominated him. He *said* he would bring in “the best people” but all he

does is complain about the people HE hired.
[fear = 0.5, surprise = 0.5, disgust = 0.5, negative = 0.5]

(ex) Trump tries to bully the world now, hell bring back the “Ugly American” image
against US and hurt the country as a whole.
[fear = 0.5, surprise = 0.25, sadness = 0.25, disgust = 0.25, anger = 0.5, negative =
0.5]

e About tax

(ex) There’s nothing more revolting than watching Trump & the republicans celebrate
this grotesque tax cut.
[fear = 0.25, surprise = 0.25, sadness = 0.25, disgust = 0.5, anger = 0.25, negative =
0.75]

(ex) Ifeel GOP will discard Trump once this thieving tax scam bill is signed.

[surprise = 0.5, sadness = 0.5, negative = 0.5]

About positive tweet, praise Trump tweets standed out. But there are many criticisms about
him. Including the word ”president” was seen in both and that number greatly exceeded negative
tweet. Emotions of “trust” were seen many in praise tweets. About negative tweet, dissatisfac-
tion with Trump tweets standed out and aggressive were seen. Including the word “tax” were
seen voice of dissatisfaction with his tax reform. There were also many other words related to
the policies of cards (gop, vote etc). Overall, there were a lot of critical tweets about Trump
without regard to positive and negative. Some of the criticisms were sarcastic tweets, and we

felt that many of them were judged positive. Also the emotion of “surprise” were seen.

4.3 Tweet trend derived from Wordcloud about Trump

We examined words in word cloud about Trump tweets in a few days. Figure d.3|and Figure
[.4is snapshot of wordcloud made by tweets of Trump. What can be said commonly on all days
is displaying the word “realDonaldTrump”. It shows that many users tweets about Trump reply
Trump’s official twitter account and use hashtag about his comments. Overall criticism against

him was outstanding regardless of positive or negative.
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CHAPTER 4. EMOTWITTER EVALUATION AND DEMONSTRATION
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Figure 4.4: Snapshot of wordcloud made by tweets of Trump in Dec.19
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Chapter 5

Conclusion

EmoTwitter became to be able to get tweets in arbitrary location and extract tweets including
specific emotions. We demonstrated two cases about emotional analysis and got interesting
results. EmoTwitter has a module that gathers past user’s tweets using the REST API and checks
the change of the tendency of emotions included in the tweets [?], and it became possible to use
it according to the situation. Extraction by emotional filter and Streaming API is useful people’s
trends for specific keywords like public opinion, trend, election etc. Check the change of the
emotion of tweet is useful for marketing, prevention of crime through the Internet. EmoTwitter
was able to find tendency from tweets containing specific emotions and prove performance.

But it is also fact that EmoTwitter has some tasks. EmoTwitter can be improved in a number
of ways. First, EmoTwitter can’t get a long tweet completely. The part behind the long tweet
is omitted because of library specification. Also we got an opinion that some tweets were not
easy to judge that there are no tweets around it in questionnaire. If we can identify stories from
tweets around the user, or from interesting categories, you may be able to do a good feeling
analysis of abstract tweets. I would like to introduce other evaluation methods so as to be able
to evaluate correctly, even for questions that were not satisfactory in the questionnaire. We think

EmoTwitter may be able to solve this problem and analyze wider.
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