

A thesis submitted in partial satisfaction of the requirements
for the degree of Master of Computer Science and Engineering

in the Graduate School of the University of Aizu

Learning Soccer Player Behavior On
Real-World Data

by

Victor Khaustov

March 2018

© Copyright by Victor Khaustov, March 2018

All Rights Reserved.

 iii

Contents

Chapter 1 Introduction .. 1
Chapter 2 Related work ... 2
Chapter 3 Processing the data .. 5

3.1 Movements detection ... 5
3.2 Passes recognition ... 6
3.3 Shots recognition ... 7
3.4 Substitutions, injuries, red cards and incorrect data .. 7

Chapter 4 Description of implementation .. 9
Chapter 5 Experiments .. 17
Chapter 6 Conclusion .. 20
References .. 21

 iv

List of Figures

Figure 2.1 State-action graph……………………………………………………….
Figure 2.2 Generalization levels……………………………………….…………….
Figure 3.1 Real-world data visualization….………………………………………...
Figure 3.2 Manual annotating of passes and shots using ANVIL Software………..
Figure 4.1 Interaction between subsystems….………………………………………
Figure 4.2 A hierarchy of main subsystems………………...….…….………………
Figure 4.3 Game situation adapters…….……………………………………………
Figure 4.4 Game events analysis…….……………….……..………………………
Figure 4.5 Action converter………………………………..……………………….
Figure 4.6 Action extractor………….……………………………..……………….
Figure 4.7 Action executing process…………………………………..…………….
Figure 4.8 Knowledge subsystem………………………………..…………………
Figure 5.1 A part of knowledge graph……………..………………..……………….
Figure 5.2 Midfield Player decision-making………………………..………………
Figure 5.3 Decision-making of another team’s midfielder…………………………
Figure 5.4 Defender’s decision making on midfielder’s knowledge……..…………

2
3
6
7
9

10
11
12
13
14
15
16
17
18
18
19

 v

Abstract

The analysis of digitalized real soccer game data is an important task for a variety
of problems, ranging from sports analytics to data-driven game AI systems. The purpose
of the thesis is to present a way to learn AI on real-world soccer data. Since spatial data
(player and ball movements) is typically available as a series of game snapshots containing
player coordinates, a method to extract real game actions, such as movements, passes, and
shots is proposed. The resulting data is used for learning AI. The architecture of an active
learning system for representing, storing and retrieving knowledge is discussed in the
thesis. The main principle behind the proposed system is asynchronous decision-making
about each AI agent's actions, using the agent's up-to-date knowledge about a game. An AI
agent's knowledge about what is happening in the game is represented by semantic directed
graphs - acting graphs and generalization trees both growing and being analyzed in real
time. The experiments with real-world data show that the proposed system is able to learn
the behavior of human soccer player of a particular role and reproduce actions in similar
game situations.

 1

Chapter 1 Introduction

Growing amount of real-world human behavior data brings new opportunities to

learn Artificial Intelligence (AI) on it. For example, most popular games, such as soccer,
basketball, ice-hockey collect data for calculating game statistics (possession, pass
accuracy, goal strikes count, distance run, speed etc.). A widely used solution on the market
is TRACAB system by ChyronHego Corporation [1]. TRACAB system uses sophisticated
image-processing technology to trace the position of all moving objects on the field of play
with a frequency of 25 times per second. The product is a live data feed that contains all
the X, Y and Z positional coordinates for each identified object, including soccer players,
referee and the ball.

The problem of learning AI on real-world data is important, and it not only can lead
to improvements in the sport industry by helping teams to recognize their strength and
weaknesses against particular opponent, but also can improve computer game industry by
delivering human-like AI agents into soccer simulator games.

The thesis presents an attempt to learn a human-like AI on the real-world data of
five soccer matches of J1 League (Japanese top division soccer league). Believability
(human-likeness) is stated as an important characteristic of AI-controlled agents. In its turn,
believability can be achieved with methods that can learn and reproduce human behavior
[2, 3].
 A method for developing AI system for learning soccer player behavior on real-
world data proposed in the thesis is based on decision trees and it employs not only players’
coordinates, but their actions, such as movements, passes and shots. For that reason,
proposed approach requires the initial data to be preprocessed and actions to be extracted.
Running of the experiments in automated mode on implemented system was described in
a journal article [4].
 The thesis is organized as follows. The second chapter looks into related work,
describes several approaches that can be used for the task of building believable AI systems
and explains the method used in the thesis. The third chapter explains how to handle the
real-world data: how to convert coordinates of the objects on the field into movement
actions and how to extract passes and shot actions. The forth chapter dives into details on
how to implement and use the proposed AI system. The fifth chapter presents the results
of experiments performed on implemented system and last chapter gives a brief conclusion.

 2

Chapter 2 Related work

When agent’s believability is stated as a goal, the approach of building AI systems
usually refers to one of the following three categories:
1. Rely on expert knowledge. Decision-making logic can be directly hand-coded

according to an expert view of the given domain. In certain cases, this solution can be
adequate, and result in a solid AI system [5].

2. Mimic human decision-making process. A system can be designed on the basis of
contemporary psychological theories of human behavior [6].

3. Rely on actual logs of human behavior. In the most straightforward form, this approach
can be reduced to replaying human decision-making logs verbatim [2], but usually it
is implemented via machine learning: agents are trained on human data to provide the
same actions as human players in similar situations [3].

The approach used in the thesis falls into the third category. It is a behavior-capture
(learning by observation) system based on case-based reasoning and case-based planning
[7]. Its behavior-capture ability provides feasible solution for development of AI agents by
transferring knowledge from the experts such as professional soccer players directly to AI
agents and capturing different behaviors from different players within one system.

Figure 2.1 State-action graph

 Learning by observation is an efficient form of knowledge acquisition which
requires the expert demonstrating the task being learned. An AI agent "observes" the
human game play and derives a knowledgebase based on the player actions given each
game situation. By analyzing a soccer match frame-by-frame, the agent processes the raw
data based on the decision logic/factors that are provided to it and develops action graphs
and situation generalization structures that are the basis of its behavior. The behavior can
be evaluated by having the agent play the game in the place of the person. At any point,
the action graph can be edited to change behavior through additional game training. The

 3

researcher also has the option to update the decision logic or the factors the agent is
considering when making decisions.
 Knowledge is represented as state and action (decision) pairs organized in a
directed graph (action graph) (as shown in Figure 2.1) coupled with a state generalization
directed acyclic graph (generalization graph). Generalization graph groups states into
several levels of abstraction.
 The Figure 2.2 shows an example of an action graph coupled with a generalization
forest. A plane with black nodes illustrates a game situation space viewed on a lowest level
of abstraction. Two trees with red nodes illustrate a sample generalization graph built ‘on
top’ of an action graph.

Figure 2.2 Generalization levels

During learning, AI agents automatically add new nodes and arcs (i.e. states and

transition) to their action graphs, and also add related nodes and arcs to their generalization
graphs. AI agent’s decision-making process consists of a situation matching step and an
action matching and planning step.
 During situation matching step AI agents search for similar states in their action
graphs utilizing the generalization graphs and extract a set of relevant actions. The situation
matching step can be described as a case-based k-nearest neighbors reasoning. By
extracting relevant cases from the knowledge, AI determines a set of actions, applicable in
the current situation.

Action matching prioritizes possible actions according to their applicability to the
current state. Actions that are applicable to the current state are further analyzed. Such

 4

analysis creates sequences of actions and examines their applicability based on the current
situation, current action and the learnt situation and action sequences in the knowledge.

The action matching step utilizes an auxiliary application-specific rule-based
system. The rule-based system has two purposes: introduce domain-dependent common
sense base logic (which is not a subject to automatic learning) into the system, and to be
able to use different factors depending on the type of the action.

Proposed system utilizes knowledge of sequences in the <situation, action> space.
It allows to preserve learned action sequences when necessary. To support optional
efficient self-learning to achieve set goals AI system can use active online reinforcement
learning with delayed rewards.

Learning of team behavior is structured as concurrent learning of collaborative
behaviors of individual team members. Each agent learns how to act in a team by
observation of a human soccer player’s actions with actions of other teammates during
training sessions. This process allows capturing of players’ collaborative behavior to a team
of agents. Every agent learns to act in a team due to anticipation of teammates’ actions
learned during training sessions.

 5

Chapter 3 Processing the data

For the game of soccer, digitalized recordings of human behavior can be obtained
with TRACAB technology [1] that relies on video streams obtained from six still video
cameras installed in a stadium. These streams are processed with tracking software that
identifies player and ball coordinates at any game moment. Resulting data files contain X,
Y coordinates of each player on the field and X, Y, Z coordinates and speed of the ball
with a frame rate of 25 frames per second.

Such tracking data can be used in a variety of tasks, mostly in the field of sport
analytics. However, TRACAB format does not contain high-level information describing
the actions that actually take place on the game field. In particular, it lacks vital information
analytical about player movements, passes and shots on goal. While the task of extracting
this information can be automated, the process is not straightforward, since numerous
difficulties have to be addressed. In the subsequent sections such difficulties will be
discussed and possible solutions will be provided.

Since the primary goal of the thesis is designing soccer game AI system proposed
in a previous chapter, the primary interest of this chapter is on extracting high-level actions
of players, such as movements, shots, and passes. For other purposes (e.g., soccer analytics)
one might also need to detect various game events, such as red cards, goals, throw-ins, and
substitutions.

To ensure that the data is correct real-world data visualization tool was developed.
The example of visualization in action is shown in Figure 3.1. Video of matches was
compared to the visualized data by watching them side by side. It was found that in many
cases the data does not correctly reflect the situation on the field.

3.1 Movements detection

For the proposed system player movements should be represented as “move in
direction D for N frames” instead of more obvious “move to the point (X, Y).” To decrease
overall complexity of the system movement actions are chosen to be of eight possible
directions: forward, backward, left, right, left-forward, right-forward, left-backward, and
right-backward. To determine movement direction, an angle between X-axis and the
direction vector {X1 – X0, Y1 – Y0} is calculated (where X1, Y1 are player coordinates in the
current frame, and X0, Y0 are player coordinates in the previous frame), and the value is
rounded to the closest direction. The consecutive frames with the same movement
directions are combined into a single movement action with a duration equal to the number
of consecutive frames.

While there are advantages of this approach like dimensionality reduction, reducing
the number of directions may decrease system’s accuracy. To compensate accumulating
errors, one of possible solutions is to keep track of player movements performed with

 6

simplified 8-direction game control, and if the difference between the resulting player
coordinates and the original (precise) coordinates reaches a certain threshold value, it is
corrected by introducing additional movement actions.

Figure 3.1 Real-world data visualization

3.2 Passes recognition

When the distance between the ball and some player is less than certain predefined
radius, such situation is recognized as ball possession. Once a player loses the ball, and the
next player to possess the ball happen to belong to the same team, the situation is
recognized as a pass action, and the other player is set as a pass target.

The most difficult situations to recognize are inaccurate and intercepted passes,
since the crucial goal is to guess player’s intention and identify the possible pass target. In
addition, inaccurate passes should not be confused with tackles. The tackles can be
identified by examining whether any of the opponents was present in the immediate
neighborhood of the player and on the way of the ball. The trajectory lines of all the
teammates and of the ball can be confirmed for their intersections. The teammate with the
closest point of intersection of its trajectory and the ball trajectory is considered to be the
pass receiver.

 7

3.3 Shots recognition

To extract shot actions, the following situation is more likely to be detected: a
player loses control of the ball, and later the ball crosses the goal line or appears to be
controlled by the goalkeeper. For the shots on goal the intersection of trajectory of the ball
and a goal line is set as an intended shot point. For the shots off target the closest point
inside the goal is set as an intended shot point. To distinguish a shot from an inaccurate
pass the speed of the ball and teammates’ positions can be taken into account. All ball
movements with ball speed above a certain threshold are considered as shots. If the speed
of the ball is low, it is recognized as pass only if there are potential pass receivers close to
the ball trajectory (see the previous section).

3.4 Substitutions, injuries, red cards and incorrect
data

Raw TRACAB data sets do not contain information of player substitutions. Each
player has an associated “jersey number” that can get a value of –1 on any frame, which
means that the given player is not active (substituted, inured, or got a red card).
Consequently, the number of players of the field is not constant. In the beginning of the
game, each side has 11 players, but during the match certain players might be removed.

Figure 3.2 Manual annotating of passes and shots using ANVIL Software

 8

The player data provided by the system is not always correct. Sometimes a ball or
a player appear on the wrong side of the field (most probably, due to tracking error).
Therefore, during the preprocessing stage the previous frame information should be stored
to compare it with the current frame player coordinates and check whether the system-
provided data can be considered possible, given the maximum speed values of players and
the ball. If the number of matches in the dataset is small the actions can be manually
annotated by ANVIL Software (as shown in Figure 3.2).

 9

Chapter 4 Description of implementation

Proposed AI system deals with numerous subsystems, both generic and game-
specific. The structure of subsystems and their interaction is a topic of this chapter.

The interaction between the separate subsystems of the proposed AI system is
shown in Figure 4.1

Figure 4.1. Interaction between subsystems

Separate subsystems form a hierarchical relationship, shown in Figure 4.2. As it

can be seen, most elements are direct successors of either AI agent or AI engine.
AI Agent subsystems, introduced in this chapter, serve as an interface between

general AI technology and soccer-specific modules. AI agents have to be able to analyze
situations and actions that occur in the game, react to game events, and pass the decisions
to the game engine.

 10

Figure 4.2. A hierarchy of main subsystems

Game Situation (GS)
Game situation (or game state) is a complete game situation description for a soccer

game. It is considered as “raw” description of a game state on a certain frame.

Game Situation Recording (GS Recording)
Real-world data is processed and converted into game situation recording. This is

a complete recording of the internal game states needed for AI agent’s knowledge of the
game environment. Recordings are classified as either training recordings (in which an AI
agent learns) or acting recordings in which the agent acts using the knowledge that it
acquired during learning. Stored recording files allow to review how any given game was
played and how the AI agent acted or learned during gameplay. AI tools allow viewing the
recordings and analyzing every decision made by AI agent step by step. Furthermore, it is
possible to review AI’s “grounds” for every decision – referring to specific instances where
AI agent has learned a tactic from a human player in previous training sessions. Both
“learning” and “acting” recordings can be replayed. Recordings are stored and they can be
viewed using a dedicated tool.

AI can learn from the recordings. Therefore, it is possible to retrain an AI agent if
something is changed in the agent's learning algorithms. This important feature allows to
play training games very early in the development of an AI agent. It is possible to learn
from any part of a recording — and therefore to edit any knowledge.

GS Recording Files
GS recording files play an important role in the development and training of AI

agents:

 11

• Every part of the match is permanently stored as a GS recording file or
immediately discarded (if during that part the ball was out of play and if the
part is not going to be used in training or testing).

• Each GS recording file may contain all the attributes of a soccer game.
• Each GS recording file might have a number of tags.
• Structured notes (allowing qualitative interpretation of a GS recording file).

GS recording files can be organized in a number of subsets to create training
or testing sessions.

• Each subset of GS recording files can contain any combination of plays.
GS recording file tags can be organized in a way allowing a semi-automatic system

to create subsets of GS recordings. The format for GS recording should allow the support
for versions.

Each GS recording (a recorded play) can be used for the purposes of:
• AI agents’ training;
• AI agents’ testing.

AI Game Situation (ACGS)
AI game situation is a “game situation as it seen by the agent”. It can differ from

“raw” description, e.g. with the presence of heuristic values and with explicit knowledge
of an agent-controlled game player.

Game Situation Adapters
GS Adapters (shown in Figure 4.3) convert (adapt) a game situation object to the

corresponding AI game situation.

Figure 4.3. Game situation adapters

Real-time GS Adapter
Real-time GS Adapter is designed to convert raw game situation data that comes

directly from a game engine.

ACGSDump AdapterGSDump Adapter

Real-time GS Adapter

Situation adapters

Game state manager
sources

Situation

External Game
Situation

Controls

Uses

 12

GS Recording Adapter
GS Recording Adapter converts an element of GS recording into the corresponding

AI game situation object.

Game Action
Game action is an elementary action of the game AI engine works with. Logically,

game actions performed by all entities in the game are part of a game situation. Technically,
AI technology does not enforce to store actions in GS objects.

AI Action
AI actions are high-level actions stored in the agent’s knowledgebase. AI actions

are related to game actions in the same way as AI game situation is related to “raw” game
situation. AI actions are directly executable by the agent.

Game Events Analysis
Game events analysis (shown in Figure 4.4) is a logical module that examines the

events in the game that are important for AI engine’s learning and acting.

Figure 4.4. Game events analysis

 13

For example, a soccer AI agent could perform the following tasks:

• Analysis for special game situations (scoring a goal etc.)
• Analysis for game phases (switching from attack to defense, etc.) and other

events.
• Analysis for the possible actions, i.e. which types of actions are possible to

execute in the current situation. Having this task completed, the game is
divided into game stages corresponding to a particular set of actions that are
allowed to be executed.

Decision Making Points Finding and Extraction
Decision making points are time moments when the agent either acts or learns new

actions. The actual work of this module is determined by the mode of the system (learning
or acting).

During acting this mechanism is used to determine when the system should perform
the next AI action. During learning this module assigns decision making points for a
teacher.

Action Converter
The purpose of Action converter subsystem is twofold. On a learning phase, it

extracts high level game actions from a sequence of game situations and low level actions
(i.e. converts low level actions to high level actions). On an acting phase, it executes a
given AI action (i.e. converts high level actions to low level actions). Generally, this
subsystem works as a converter between low level game actions and high level AI actions.
The structure of Action converter is shown in Figure 4.5

Figure 4.5. Action converter

AI Action Extractor
This subsystem provides means for extraction of high level AI actions from a

sequence of game situations and low-level game actions. A soccer game action extractor is
shown in Figure 4.6

 14

Figure 4.6. Action extractor

AI Action Executor
This subsystem’s goal is to execute high level AI actions as a series of low level

game actions while taking the following into account:
• the subsystem should handle differences between the current situation and

the situation during learning;
• the subsystem should be able to adjust the sequence of game actions in case

of game situation changes during acting.
The diagram of the subsystem is shown in Figure 4.7

Local Classified Game Situation (LCGS)
In most cases, game situation includes lots of information that AI will not use. Some

aspects of game situation may be important only for the particular decision-making mode
or for a particular AI’s subsystem.

LCGS is a representation for a single aspect of game situation, important for AI’s
knowledge and decision-making process. This representation can be a simple value from
the situation tracked with a certain level of details or it may be a value of some kind of
heuristic.

Local Classifier (LC)
LCs may be very simple, or they may be non-trivial subsystems that evaluate some

heuristic values.
Local classifiers may be static or dynamic. Static local classifiers can create LCGS

using situation data on one frame. Dynamic classifiers need some “history”, though it is

 15

better to get the necessary information from one frame (i.e. to avoid creating dynamic
classifiers), if possible.

Figure 4.7. Action executing process

Compound Objects and Zoom Levels
A game situation can be analyzed on different levels of abstraction (called zoom

levels, Figure 2.2). This functionality is essential for searching similar game situations. For
example, two game situations can be treated as equal if they match at the lowest (the most
detailed) zoom level, and as “similar enough” if they match on the higher levels of
abstraction only. The most detailed zoom level is referenced as “zoom level zero” or “Z0”.

 16

Acting Graph and Knowledge
The behavior of any AI agent is determined by the contents of its knowledgebase,

represented in the form of acting graph (Figure 2.1). The nodes of this graph are individual
game states, and the arcs are game actions. If states S1 and S2 are connected with the arc
labeled A, it means that the game is switched from the state S1 to the S2 by executing action
A.

Acting graph is connected to the system of zoom levels, so that AI engine can
analyze the relations between the game situations on different levels of abstraction.

The scheme of Knowledge subsystem is shown in Figure 4.8.

Figure 4.8. Knowledge subsystem

 17

Chapter 5 Experiments

To evaluate the implemented system that observes logs of real-world soccer
matches several experiments have been conducted. The system can learn human player
behavior from a single match or numerous matches. The experiments aimed to test the
ability of the system to learn the behavior of a player of a particular role on the field.

The data for experiments consists of 5 real-world soccer matches of a top Japanese
soccer league (J1 league). To exercise the proposed system the dataset was divided into
learning and acting by a proportion of 80:20. Learning dataset of 500 000 frames contained
about 54 000 actions. Acting dataset of 132 000 frames contained 13 500 actions.
 A role of the midfielder was chosen for learning. Figure 5.1 shows a part of a
knowledge graph generated during learning phase.

Figure 5.1 A part of knowledge graph

First, the resulting AI agent’s knowledge was tested on acting dataset of the player

itself. Figure 5.2 shows a chart of decisions retrieved from a knowledge graph. In 14% of
cases AI agent was able to find a corresponding action on the lowest generalization level
(Level 0) where the highest number of game attributes is taken into account. And in 65%
cases the agent was able to retrieve knowledge from less precise generalization Level 1.
Only in 1 % of cases agent could not find a match in the knowledgebase.

 18

Figure 5.2 Midfield player decision-making during training

Next, the AI agent’s knowledge was tested on acting dataset of the player of the
same role (midfielder) but from a different team. As shown in Figure 5.3, the were no
corresponding knowledge found on the generalization Level 0, but in 45% of cases it was
discovered on the generalization Level 1 and in 53 % on the generalization Level 2.

Figure 5.3 Decision-making of another team’s midfielder

Finally, when the decision-making process was tested on acting dataset of the

player of the different role (defender) of the same team (Figure 5.4), the AI agent could not
find a corresponding action in the knowledgebase in 63% of cases, and the rest of the
actions were discovered on the generalization Level 2, which is the least precise level
containing only a fraction of game attributes.

 19

Figure 5.4 Defender’s decision-making on midfielder’s knowledge

 20

Chapter 6 Conclusion

An active learning system, including methods for representing, storing and
retrieving knowledge, was presented in the thesis. The way to use it with real-world soccer
data was described. It was shown that using the system with real-world soccer data and
learning player behavior on it requires additional data processing steps to recognize players
actions. Typical challenges of recognizing actions have to be addressed to use tracking of
real soccer matches for the purposes of learning player behavior. Furthermore, while
preprocessing the data one should take care of possible substitutions, red cards and frames
containing incorrect information.

The main principle behind the proposed system is asynchronous decision-making
about each AI agent’s actions, using the agent’s up-to-date knowledge about a game.
Knowledge is organized hierarchically in a flexible number of levels of abstraction – zoom
levels. Each zoom level corresponds to a set of specific game situation representations.
Game situation representations are game dependent but flexible.

An AI agent’s knowledge about what is happening in the game is represented by
semantic directed graphs — acting graphs and generalization trees both growing and being
analyzed in real time. Acting graphs store “game situation -> action -> game situation” –
type data. Generalization trees provide means for structured hierarchical analysis of game
data — the physical organization of “zoom levels.”

The proposed system allows development of AI agents, providing a standardized
way to test and analyze AI agents' behaviors. It is possible to see grounds for every decision
that an AI agent makes. It is possible to look into AI knowledge and analyze its structure.
AI decisions are always transparent compared to Neural Networks approach. The
experiments with real-world data showed the ability of proposed system to learn player
behavior of a particular role.

 21

References

[1] TRACAB Technology. Project homepage: http://tracab.com

[2] I. V. Karpov, J. Schrum, and R. Miikkulainen, “Believable Bot Navigation via
Playback of Human Traces,” in Believable Bots: Can Computers Play Like People?, P.
Hingston, Ed, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 151–170.

[3] J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis, “Imitating Human Playing
Styles in Super Mario Bros,” Entertainment Computing, vol. 4, no. 2, 2013, pp. 93–104.�

[4] V. Khaustov, M. Mozgovoy. “Teaching Automated Software Testing with Appium
and Soccer Simulator,” NOSU Bulletin, 2017, pp. 124-127.

[5] A. M. Mora, F. Aisa, P. García-Sánchez, P. Á. Castillo, and J. J. Merelo, “Modelling
a Human-Like Bot in a First Person Shooter Game,” International Journal of Creative
Interfaces and Computer Graphics (IJCICG), vol. 6, no. 1, pp. 21–37, 2015.

[6] Asensio, Joan Marc Llargues et al, “Artificial Intelligence approaches for the
generation and assessment of believable human-like behaviour in virtual characters,”
Expert Systems with Applications, vol. 41, no. 16, pp. 7281–7290, 2014.

[7] M. Mozgovoy and I. Umarov, “Behavior Capture with Acting Graph: A
Knowledgebase for a Game AI System,” in Databases in Networked Information Systems
(DNIS): 7th International Workshop, S. Kikuchi, A. Madaan, S. Sachdeva, and S. Bhalla,
Eds, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 68–77, 2011.

[8] Kipp, M. (2014) “ANVIL: A Universal Video Research Tool,” in: J. Durand, U. Gut,
G. Kristofferson (Eds.) Handbook of Corpus Phonology, Oxford University Press,
Chapter 21, pp. 420-436

