
1

University of Aizu, Graduation Thesis. March, 2018 s1222006

Abstract
 In games that are applied AI algorithms, we
inevitably provide data sets for them for training so that
data sets should be organizing well by using a data
structure providing adequate performance. The runtime
of data queries must be concerned about when the
system could not be a strong machine (such as smart
phones). In this article, we introduce to an enhanced
method of designing a new strategy of data store in a
system which can boost the runtime compared to built-
in libraries. This article is aimed to resolve the problem
how to store data of keys as distinct integer tuples with
their properties.

1 Introduction
AI algorithms that rely on case-based reasoning

contain a retrieval step which returns matching
situations from a knowledgebase. That is one of
reasons why applications in which scientists apply AI
algorithms demand a large number of data set for
training (supervised and unsupervised). For a large
scalable application as a complicated system, we must
provide it with labeled data sets which are stored in
data structures. These data structures must support us
with a number of must-have actions such as insertion,
deletion and data search. In this report, we will go into
detail of soccer game AI in which we supply data set
of coordinators and distances between 2 players
represented as a vector which contains integers and
ranges of integers.

When system of soccer game answers queries of
ranges between in-game soccer players controlled by
AI, a clear mechanism must be provided because of
complicated structure of ranges as tuples of integer. A
key may contain integers or ranges of integers that
represent parameters of in-game characters to support
the system in finding best coordinators for characters
to move to. For example, in Soccer game on
smartphones, a mechanism is that in-game players run
to good places based on distances from them to others,
we represent players’ coordinator as a tuple of integers
and this tuple can also store other information which
supports our system to find good strategies for AI
players.

My solution for this problem is applying a method
as a combination of KD-Tree and Hash Function to
store keys as tuples of integers. Because of its
complicated structure and no library provided a
specific method to support it, we proposed to hash

“ranges of integer” into single values as integers and
then, we can apply K-D tree to store their key, values
and other information.

2 Methods

2.1 K-D Tree (K-dimensional Tree)

In computer science, a k-d tree[1] is a space-
partitioning data structure for organizing
points in a k-dimensional space. K-d tree is a
useful data structure for several applications.

In the case of no ranges of integer appeared in
key (For example: <-100, 22, 3, 400>). We can
store key with its value in K-D tree without
concerning about collisions. We can consider
the number of element in total as the number
of dimension in order to insert this key into K-
D tree.
In this article, we will introduce operations on
a k-d tree.

2.1.1 K-D tree Construction
 The traditional method of k-d tree construction
has the following constraints:

 - As one moves down on the tree, one cycles
through the axes used to select the splitting
planes.

 - Points are inserted by selecting the median of
the points being put into the subtree.

 Pseudocode below is a way of k-d tree
construction.
function KDTreeBuild(List of points, int depth){

 //Select axis based on depth

 int axis := depth % k;

 //Sort point list and choose median as pivot element

 select median by axis from list of points.

 //create node and construct subtree

Hash-based key-value pair storage for efficient range search

Pham Ngoc Lam s1222006 Supervised by Prof. Maxim Mozgovoy

(40, 45)

(15, 70) (70, 10)

(69, 50)

https://en.wikipedia.org/wiki/K-d_tree#cite_note-blum-3

2

University of Aizu, Graduation Thesis. March, 2018 s1222006

 node.location := median;

 node.leftChildren := KDTreeBuild(points in list before

median, depth + 1);

 node.rightChildren := KDTreeBuild(points in list

after median, depth + 1);

}

 2.1.2 Adding new elements
 Insert operation in a k-d tree is the same way as
one adds an element to any other search tree(AVL tree,
red black tree).

 - Traverse the tree, starting at root node and
moving to either the left or the right child
depending on whether the point to be inserted
is on the left or right side of the splitting plane.

 - Add the new point as either the left or right
child of the leaf node, again depending on
which side of the node’s splitting plane
contains the new node.

 Pseudocode below describes the way of how
to insert new elements into a k-d tree.

Node insert(Node root, point, int depth){

 if root == null: return new Node(point).

 //calculate current dimension of comparison.

 int axis := depth % k;

 if point[axis] < root->point[cd]:

 root->left = insert(root->left, point, depth + 1);

 else

 root->right = insert(root->right, point, depth + 1);

 return root;

}

2.1.3 Find minimum element
To find minimum point, we traverse nodes starting

from root. If dimension of current level is same as
given dimension, then required minimum lies on left
side if there is left child.

Pseudocode below describes the way of how to find
minimum element.

int findMin(Node root, int d, int depth){

 if root == null: return INT_MAX;

 int axis := depth % k;

 if axis == d:

 if root->left == null:

 return root->point[d];

 return findMin(root->left, d, depth + 1);

 return min(root->point[d], findMin(root->left, d, depth +

1), findMin(root->right, d, depth + 1));

}

2.1.4 Removing elements
If we want to remove a point from an existing k-d

tree, without breaking the invariant, the easiest way is
to form the set of all nodes and leaves from the
children of the target node, and then recreate the part
of the tree.

Pseudocode below is one way of deleting elements
existing in a k-d tree.

Node deleteNode(Node root, point p, int depth){

 if root == null: return null;

 int axis := depth % k;

 if point of root and point p are the same:

 if root->right != null:

 //find minium of root’s dimension in right subtree

 Node min := findMin(root->right, axis);

 copyPoint(root->point, min->point);

 root->right := deleteNode(root->right, min->point,

depth + 1);

 else if root->left != null:

 Node min := findMin(root->left, axis);

 copyPoint(root->point, min->point);

 root->left := deleteNode(root->left, min->point, depth + 1);

 else return null;

 return root;

}

2.1.5 Searching elements
To search elements existing in a k-d tree, we only

need to traverse the tree, starting at root node and then
moving to the left or right child depends on
comparison between target point and point of node we
are traversing at.

bool searchElement(Node root, point p, int depth){

 if root == null: return false;

 if root->point and p are the same: return true;

 int axis = depth % k;

 if p[axis] < root->point[axis]:

 return searchElement(root->left, p, depth + 1);

 else

 return searchElement(root->right, p, depth + 1);

}

2.1.6 Complexity for each operation

Algorithm Average Worst case

Space O(n) O(n)

Search O(log n) O(n)

Insert O(log n) O(n)

Delete O(log n) O(n)

2.2 Hash Function

For keys containing ranges of integer elements, we
cannot directly use k-d tree, so that we try to find a
method in which we can apply k-d tree on this case.
This method is to choose hash function and hash
ranges of integer elements. Therefore, we can get only
one value for each range and as a result, we can
convert a key containing ranges of integer into one
containing no ranges of integer.

First, let recall the definition of hash function[2]:

https://en.wikipedia.org/wiki/K-d_tree#cite_note-blum-3

3

University of Aizu, Graduation Thesis. March, 2018 s1222006

A hash function[3] is any function that can be used to
map data of arbitrary size to data of fixed size.

At step of choosing hash function for range of

integer, say [a, b] (a, b are integers), because we can
know boundary of a and b, and in this range, there are
(a – b + 1) integers in total. We come up with a idea of
using sums of series which we can find closed-form
expressions.

There are some sums of series with their closed-
form expressions we can apply on this problem.

1.

 ∑ 𝑖2𝑛

𝑖=0
=

𝑛∗(𝑛+1)(2 n +1)

6

2.

 ∑ 𝑖𝑛
𝑖=0 =

𝑛 ∗ (𝑛+1)

2

3.

 ∑ 𝑖3𝑛

𝑖=0
=

(𝑛2+𝑛)
2

4

4.

 ∑ 𝑖4𝑛

𝑖=0
=

𝑛∗(𝑛 + 1)∗(2𝑛+1)(3𝑛2+3𝑛−1)

30

In general case: we use sums of series:

 𝑓(𝑛, 𝑎) = ∑ 𝑖𝑎𝑛
𝑖=0 (𝑎 = 1, 2, 3, 4 … .)

For each 𝑎, we can find a closed-form expression

but if 𝑎 is large, this is a very tough task.

We can control the boundary of a and b (Let assume
that b > a ≥ M) so that we can avoid the situation that
a is a negative integer because b – M > a – M ≥ 0.

Now [a, b] becomes [a – M, b – M] and then, we
apply expressions above. We have:

Hash value of [a, b] = 𝑓(𝑏 − 𝑀, 𝑎) − 𝑓(a − 𝑀, 𝑎)
However, because we use hash functions so that

collisions can happen. If n is a large number, the
number of collision is not a big integer and we can
generate all of them which are the key to solve
collision avoidance. Now, let us show a method below
of calculating the number of collision.

If two different ranges have a same hash value, we
will have an equation below:

𝑓(𝑦1 − 𝑀, 𝑎) − 𝑓(x1 - M, 𝑎) = 𝑓(𝑦2 − 𝑀, 𝑎) −
𝑓(𝑥2 − 𝑀, 𝑎)

⟨=⟩ ∑ 𝑖𝑎 =

𝑦1−𝑀

𝑖=𝑥1−𝑀

∑ 𝑖𝑎

𝑦2−𝑀

𝑖=𝑥2−𝑀

After solving this equation on computer and counting

all of ranges that causes collisions, we have a statistical

table below:

n 𝑎 1 2 3 4

1000 120123 1949 199 0

10000 11193351 33791 1079 0

For each value of integer n, we can calculate its universe

– the total number of pair a and b (a < b):

𝛺 = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯ + 1 =
𝑛 ∗ (𝑛 + 1)

2

And then, based on the above table, we calculate

probability of collision which can happen.

n 𝑎 1 2 3 4

1000 24% 0.39% 0.0397% 0%

10000 22.38% 0.0675% 0.002% 0%

However, when n is large, an big prime P will be a good
choice if we want to minimize hash values.
 In other word, all hash values (call H) will sastify:
0 ≤ H < P.
 The pros of using a prime is we only need to handle
not too large numbers of hash values and the cons is
more collisions can be happend. Let apply birthday
paradox on calculating the probability of two distinct
ranges which have a same hash value, we have:

 𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑒𝑥𝑖𝑠𝑡𝑠) = ∏ (1 −
𝑖

𝑃
)

𝛺

𝑖=1

Key containing Range of
integer

Hash function

Key containing no range of
integer

https://en.wikipedia.org/wiki/K-d_tree#cite_note-blum-3

4

University of Aizu, Graduation Thesis. March, 2018 s1222006

 Let presume that √𝑃 ≈ 3∗104, we can calculate P

for specific integers of Ω.

Ω P(collision exists)

10000 0.9512

100000 0.0067

1000000 6.0273e-218

10000000 2.42092e-322

 From the table above, we can conclude that in case

Ω is not a large number, we should use more than one

big prime to avoid collisions because

𝑙𝑖𝑚
𝑡→∞

𝑎𝑡 = 0, (0 < 𝑎 < 1)

t: the number of primes.
a: supremum of P(collision exists).

3 Results
The mechanism above provides a method for

us to implement a specific data structure
including hashing data set, insertion, deletion and
data search.

This method has all advantages of K-D tree
and hash-function technique to solve the problem
of lacking built-in libraries which support us to
store range-of-integer key in database. The table
below shows us time complexity for each action.

Algorithm Average Worst case

Space O(n) O(n)

Search O(log n) O(n)

Insert O(log n) O(n)

Delete O(log n) O(n)

Although it can solve our problem partially,
drawbacks of this method is collision which we
can minimize its probability of happening by
choosing a good hash function. On the other
hand, its implementation in programming
languages is complicated.

4 Acknowledgement

Reference
1. Steven S Skiena “The algorithm design Manual

– second edition”, k-d tree – page 389, 390, 391
2. Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein. “Introduction

to Algorithms”, hash functions. McGraw-Hill,
2001, page 262 - 268.

3. Steven S Skiena “The algorithm design Manual
– second edition”, hashing and string – page 89
- 92

5

University of Aizu, Graduation Thesis. March, 2018 s1222006

