
Abstract 

We analyzed human and AI player behavior styles 

in Universal Fighting Engine, and built a visualization 

tool for the convenience of analysis. In the experiment, 

we examine characters’ internal status and actions. We 

calculated cosine similarity to compare players by 

examining combo chains and individual actions. Our 

experiments show that both human players and AI 

agents exhibit distinguishable behavior patterns. 

1. Introduction 

The technology of artificial intelligence is 

developing every year. Building AI that behaves like a 

human is a goal of many research projects. We are 

interested in AI that behaves like a human, such 

technologies have numerous applications in computer 

games and simulations. In our research, we are aiming 

to build AI behaves like a human in an arcade fighting 

game. As a preliminary step, we think it is helpful to 

analyze human behavior styles in the game. In this 

paper, we will examine whether a human’s playstyle 

of arcade fighting game can be reliably identified. 

2. UFE: experimental testbed 

In our experiments, we used Universal Fighting 

Engine (UFE, Figure 1) [1]. It is a publicly available 

game engine for Unity development environment [2], 

and convenient for our purposes. Players can operate 

game characters by controlling six attack buttons and 

four-direction keys. Also, the players can make own 

character perform a special action such as fireball and 

uppercut when the player presses some keys 

consecutively. Furthermore, the players can perform 

additional actions by using unique commands when a 

special gauge in the bottom of the display is full. In 

addition, we developed a visualization tool (Figure 2) 

for experiment’s convenience. This tool shows us 

internal description of each game snapshot, including 

attributes such as character internal state, location, hit 

points, special gauge, etc. 

 

Figure 1. Universal Fighting Engine 

3. Visualization tool 

This tool uses GDI+ [3] for drawing game situations. 

When we analyze player’s behavior, we get dumps of 

game situations in a log file. We use that log file to 

visualize game situation. The log file contains 

character’s position (x y z coordinates), current state 

(constructed by character’s state that is clearly 

recognized by a human observer), current sub state 

(additional features of character’s state that is difficult 

to recognize), current basic move (non-attack action 

and passive action), current move (attack action), and 

more status fields such as hit points and special gauge. 

When a log file is imported, this tool picks these values 

on every frame, and visualizes them using a simplified 
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Figure 2. Above: Visualization tool; below: Game 

window showing the same frame 

graphical representation. For example, when this tool 

reads character’s state, it draws a picture that is 

equivalent to character’s state. Some information that 

is difficult to display as a picture is displayed in textual 

form in window corners. The main purpose of this 

visualization tool is to display detailed information 

about the game states on every frame. It is not 

available in the real game window, so it is difficult to 

understand the details of each game situation just by 

watching game movie clips. The main screens of the 

visualization tool (Figure 2, above) and the real game 

window (Figure 2, below) show roughly the same 

information about characters (such as location and 

posture). However, a separate “GS Tree View” 

window of the visualization tool shows numerous 

additional elements of the game state, not available in 

the real game window (Figure 3). The posture of a 

character in the visualization tool main window is 

determined by the value of currentState field in 

the game state. There are four possible values, and 

hence four possible postures for now; however, we are 

planning to support more types of posture by analyzing 

the value of currentMove in the future.  

 

Figure 3. GS Tree View 

4. Experimental method [4] 

There are some methods to analyze player’s 



behavior, such as analyzing by watching playing 

movie by testers (what is called Turing test) [5]. In the 

following experiment, we tried to distinguish play 

styles of individual characters by analyzing their 

actions. 

・We relied on five human players A-E and three 

difficulties of AI players (Ve: very easy, No: normal, 

Im: impossible). The AI players are provided with 

UFE. 

・These players played three sets of matches using a 

round-robin scheme. The resulting game logs were 

recorded. 

・ To analyze the similarities in play styles, we 

compared players’ “behavior fingerprints” obtained 

with two different methods. The first method is to 

prepare a vector of probabilities of individual actions 

in a certain player’s game log. This vector serves as a 

“behavior fingerprint” and identifies player’s play 

style. The second method is to prepare a matrix of 

probabilities of two consecutive actions in the game 

log. To get such combo data, we had to count 

frequencies for each combination of two possible 

actions in the game log, and divide all frequency 

values by the total frame count. 

・To compare the fingerprints of individual players, 

we used cosine similarity measure [6]. 
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For example, when we calculate similarity between 

player A and player B, we begin by calculating 

behavior fingerprints of A and B using all games where 

A or B participates, such as player A vs player C, and 

player B vs player E. Then, we compare the obtained 

fingerprints by using round-robin scheme, and 

calculate the average of obtained similarities. In order 

to compare matrices, we first convert them into vectors 

by writing down matrix content row after row. In order 

to calculate similarity between player A and player A, 

we begin by preparing fingerprints that A participates 

(A vs B, A vs C, …, A vs Im). Then, we compared the 

obtained fingerprints by using round-robin scheme, 

and then, we calculated obtained similarities average. 

However, the same fingerprint such as A vs B and itself 

are not compared, because it is self-evident that the 

similarity of same fingerprint is 1.0. 

・After comparing cosine similarity for each possible 

player pair, we drew conclusion. 

5. Results 

Example behavior fingerprints of players obtained 

with the described above methods are shown in the 

Table 1 (individual actions) and Table 2 (action 

Table 1. Probabilities of individual actions 

punch uppercut kick fireball … 

0 0.0056 0.1124 0.0107 … 

 
Table 2. Probabilities of action combos 

 Light 

kick 

Medium 

kick 

Heavy 

kick 

… 

Light 

kick 

0 0 0 … 

Medium 

kick 

0 0.0667 0.121 … 

Heavy 

kick 

0 0.0181 0 … 

… … … … … 

 



combos). The size of table 1 is 33 

rows, because in this game, 

character has 33 attack actions. In 

the same way, the size of table 2 is 

33×33. In the Table 2 the column 

name denotes the first action in 

chain, while the row name is the 

second action in chain. For 

instance, the value 0.0181 in the 

Table 2 corresponds to the 

sequence of a medium kick and a 

heavy kick. 

Table 3 shows player cosine 

similarity values calculate on the 

basis of Table 2 (combo chains). 

For example, the similarity of 

players in a pair A-A is 0.813. It is 

the highest value in all match 

player A relates. The Table 4 shows 

player similarities calculated using 

a cosine similarity value for 

vectors of probabilities of 

individual actions. In general, we can see a similar 

tendency in these values and the previous table values, 

such as high similarity between the fingerprints of the 

same player, and much lower similarity between the 

fingerprints of distinct players. The only exception is 

the pair C-D, that is higher than D-D. 

6. Discussion and Conclusion 

Considering combo chains, high cosine similarity 

appears in the analysis of the same player’s 

fingerprints. There are some lower cosine similarity 

values such as for the pair D-D, however, it is still 

higher than any other pair that includes D. Therefore, 

we can say that an individual human’s playstyle can be 

identified by analyzing character actions forming a 

combo chain. 

However, analyzing individual actions is less 

reliable, as shown with the high similarity value 

between the player C and D in the Table 4. It means 

that the player C is more like the player D than the 

player D oneself, which is unexpected. We think this 

situation shows that individual actions are not enough 

to build a precise behavior fingerprint. For example, 

suppose there are two combos punch-punch-kick and 

punch-kick-punch. When we analyze their actions 

Table 3. Cosine similarity (combo chains) 

A 0.813        

B 0.456 0.848       

C 0.314 0.360 0.850      

D 0.342 0.557 0.662 0.688     

E 0.478 0.659 0.604 0.617 0.733    

Ve 0.440 0.715 0.313 0.526 0.559 0.907   

No 0.445 0.436 0.439 0.504 0.500 0.507 0.798  

Im 0.446 0.690 0.364 0.537 0.584 0.730 0.598 0.798 

 A B C D E Ve No Im 

 
Table 4. Cosine similarity (individual actions) 

A 0.894        

B 0.465 0.780       

C 0.262 0.287 0.964      

D 0.258 0.385 0.780 0.733     

E 0.491 0.601 0.708 0.628 0.745    

Ve 0.464 0.551 0.419 0.507 0.531 0.732   

No 0.457 0.279 0.543 0.547 0.453 0.609 0.919  

Im 0.485 0.518 0.450 0.559 0.509 0.730 0.815 0.856 

 A B C D E Ve No Im 

 



independently, these two combos consist of the same 

actions (two punches and one kick). However, if we 

consider combinations of two consecutive actions, we 

will get distinct “combos” (punch-punch, punch-kick 

and punch-kick, kick-punch). Therefore, cosine 

similarity of combo chains takes into account more 

details. Furthermore, we calculated average similarity 

of same players and different players’ using both 

method of similarity assessment, and compared their 

difference. We found that difference of average in 

combo chain is larger than for individual actions. 

Therefore, we can say that using cosine similarity of 

combo chains is superior to individual actions. Finally, 

we conclude that identifying human playstyle is 

possible, but we recommend relying on combo chains 

rather than individual actions for building behavior 

fingerprints. 

We think this research will helpful to analyze human 

playstyle, and to build AI that behaves a human 

eventually. We hope that our research will contribute 

to develop computer fighting game AI and the AI that 

behaves like a human. 
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