
Abstract

We analyzed human and AI player behavior styles

in Universal Fighting Engine, and built a visualization

tool for the convenience of analysis. In the experiment,

we examine characters’ internal status and actions. We

calculated cosine similarity to compare players by

examining combo chains and individual actions. Our

experiments show that both human players and AI

agents exhibit distinguishable behavior patterns.

1. Introduction

The technology of artificial intelligence is

developing every year. Building AI that behaves like a

human is a goal of many research projects. We are

interested in AI that behaves like a human, such

technologies have numerous applications in computer

games and simulations. In our research, we are aiming

to build AI behaves like a human in an arcade fighting

game. As a preliminary step, we think it is helpful to

analyze human behavior styles in the game. In this

paper, we will examine whether a human’s playstyle

of arcade fighting game can be reliably identified.

2. UFE: experimental testbed

In our experiments, we used Universal Fighting

Engine (UFE, Figure 1) [1]. It is a publicly available

game engine for Unity development environment [2],

and convenient for our purposes. Players can operate

game characters by controlling six attack buttons and

four-direction keys. Also, the players can make own

character perform a special action such as fireball and

uppercut when the player presses some keys

consecutively. Furthermore, the players can perform

additional actions by using unique commands when a

special gauge in the bottom of the display is full. In

addition, we developed a visualization tool (Figure 2)

for experiment’s convenience. This tool shows us

internal description of each game snapshot, including

attributes such as character internal state, location, hit

points, special gauge, etc.

Figure 1. Universal Fighting Engine

3. Visualization tool

This tool uses GDI+ [3] for drawing game situations.

When we analyze player’s behavior, we get dumps of

game situations in a log file. We use that log file to

visualize game situation. The log file contains

character’s position (x y z coordinates), current state

(constructed by character’s state that is clearly

recognized by a human observer), current sub state

(additional features of character’s state that is difficult

to recognize), current basic move (non-attack action

and passive action), current move (attack action), and

more status fields such as hit points and special gauge.

When a log file is imported, this tool picks these values

on every frame, and visualizes them using a simplified

Identifying player behavior styles in an arcade fighting game

Toru Ito s1210045 Supervised by Maxim Mozgovoy

Figure 2. Above: Visualization tool; below: Game

window showing the same frame

graphical representation. For example, when this tool

reads character’s state, it draws a picture that is

equivalent to character’s state. Some information that

is difficult to display as a picture is displayed in textual

form in window corners. The main purpose of this

visualization tool is to display detailed information

about the game states on every frame. It is not

available in the real game window, so it is difficult to

understand the details of each game situation just by

watching game movie clips. The main screens of the

visualization tool (Figure 2, above) and the real game

window (Figure 2, below) show roughly the same

information about characters (such as location and

posture). However, a separate “GS Tree View”

window of the visualization tool shows numerous

additional elements of the game state, not available in

the real game window (Figure 3). The posture of a

character in the visualization tool main window is

determined by the value of currentState field in

the game state. There are four possible values, and

hence four possible postures for now; however, we are

planning to support more types of posture by analyzing

the value of currentMove in the future.

Figure 3. GS Tree View

4. Experimental method [4]

There are some methods to analyze player’s

behavior, such as analyzing by watching playing

movie by testers (what is called Turing test) [5]. In the

following experiment, we tried to distinguish play

styles of individual characters by analyzing their

actions.

・We relied on five human players A-E and three

difficulties of AI players (Ve: very easy, No: normal,

Im: impossible). The AI players are provided with

UFE.

・These players played three sets of matches using a

round-robin scheme. The resulting game logs were

recorded.

・ To analyze the similarities in play styles, we

compared players’ “behavior fingerprints” obtained

with two different methods. The first method is to

prepare a vector of probabilities of individual actions

in a certain player’s game log. This vector serves as a

“behavior fingerprint” and identifies player’s play

style. The second method is to prepare a matrix of

probabilities of two consecutive actions in the game

log. To get such combo data, we had to count

frequencies for each combination of two possible

actions in the game log, and divide all frequency

values by the total frame count.

・To compare the fingerprints of individual players,

we used cosine similarity measure [6].

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cosθ =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖

=
∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1

√∑ 𝐴𝑖
2√∑ 𝐵𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

For example, when we calculate similarity between

player A and player B, we begin by calculating

behavior fingerprints of A and B using all games where

A or B participates, such as player A vs player C, and

player B vs player E. Then, we compare the obtained

fingerprints by using round-robin scheme, and

calculate the average of obtained similarities. In order

to compare matrices, we first convert them into vectors

by writing down matrix content row after row. In order

to calculate similarity between player A and player A,

we begin by preparing fingerprints that A participates

(A vs B, A vs C, …, A vs Im). Then, we compared the

obtained fingerprints by using round-robin scheme,

and then, we calculated obtained similarities average.

However, the same fingerprint such as A vs B and itself

are not compared, because it is self-evident that the

similarity of same fingerprint is 1.0.

・After comparing cosine similarity for each possible

player pair, we drew conclusion.

5. Results

Example behavior fingerprints of players obtained

with the described above methods are shown in the

Table 1 (individual actions) and Table 2 (action

Table 1. Probabilities of individual actions

punch uppercut kick fireball …

0 0.0056 0.1124 0.0107 …

Table 2. Probabilities of action combos

 Light

kick

Medium

kick

Heavy

kick

…

Light

kick

0 0 0 …

Medium

kick

0 0.0667 0.121 …

Heavy

kick

0 0.0181 0 …

… … … … …

combos). The size of table 1 is 33

rows, because in this game,

character has 33 attack actions. In

the same way, the size of table 2 is

33×33. In the Table 2 the column

name denotes the first action in

chain, while the row name is the

second action in chain. For

instance, the value 0.0181 in the

Table 2 corresponds to the

sequence of a medium kick and a

heavy kick.

Table 3 shows player cosine

similarity values calculate on the

basis of Table 2 (combo chains).

For example, the similarity of

players in a pair A-A is 0.813. It is

the highest value in all match

player A relates. The Table 4 shows

player similarities calculated using

a cosine similarity value for

vectors of probabilities of

individual actions. In general, we can see a similar

tendency in these values and the previous table values,

such as high similarity between the fingerprints of the

same player, and much lower similarity between the

fingerprints of distinct players. The only exception is

the pair C-D, that is higher than D-D.

6. Discussion and Conclusion

Considering combo chains, high cosine similarity

appears in the analysis of the same player’s

fingerprints. There are some lower cosine similarity

values such as for the pair D-D, however, it is still

higher than any other pair that includes D. Therefore,

we can say that an individual human’s playstyle can be

identified by analyzing character actions forming a

combo chain.

However, analyzing individual actions is less

reliable, as shown with the high similarity value

between the player C and D in the Table 4. It means

that the player C is more like the player D than the

player D oneself, which is unexpected. We think this

situation shows that individual actions are not enough

to build a precise behavior fingerprint. For example,

suppose there are two combos punch-punch-kick and

punch-kick-punch. When we analyze their actions

Table 3. Cosine similarity (combo chains)

A 0.813

B 0.456 0.848

C 0.314 0.360 0.850

D 0.342 0.557 0.662 0.688

E 0.478 0.659 0.604 0.617 0.733

Ve 0.440 0.715 0.313 0.526 0.559 0.907

No 0.445 0.436 0.439 0.504 0.500 0.507 0.798

Im 0.446 0.690 0.364 0.537 0.584 0.730 0.598 0.798

 A B C D E Ve No Im

Table 4. Cosine similarity (individual actions)

A 0.894

B 0.465 0.780

C 0.262 0.287 0.964

D 0.258 0.385 0.780 0.733

E 0.491 0.601 0.708 0.628 0.745

Ve 0.464 0.551 0.419 0.507 0.531 0.732

No 0.457 0.279 0.543 0.547 0.453 0.609 0.919

Im 0.485 0.518 0.450 0.559 0.509 0.730 0.815 0.856

 A B C D E Ve No Im

independently, these two combos consist of the same

actions (two punches and one kick). However, if we

consider combinations of two consecutive actions, we

will get distinct “combos” (punch-punch, punch-kick

and punch-kick, kick-punch). Therefore, cosine

similarity of combo chains takes into account more

details. Furthermore, we calculated average similarity

of same players and different players’ using both

method of similarity assessment, and compared their

difference. We found that difference of average in

combo chain is larger than for individual actions.

Therefore, we can say that using cosine similarity of

combo chains is superior to individual actions. Finally,

we conclude that identifying human playstyle is

possible, but we recommend relying on combo chains

rather than individual actions for building behavior

fingerprints.

We think this research will helpful to analyze human

playstyle, and to build AI that behaves a human

eventually. We hope that our research will contribute

to develop computer fighting game AI and the AI that

behaves like a human.

References

[1] Universal Fighting Engine (UFE).

 http://www.ufe3d.com

[2] Unity 3D Game Engine Project website.

 http://unity3d.com

[3] GDI+ Graphic.

https://msdn.microsoft.com/ja-

jp/library/aa984108(v=vs.71).aspx

[4] Toru Ito, Tatsuhiro Rikimaru, “Tracing Human

Behavior Styles in a Computer Fighting Game”,

Symposium on Big Data Analytics in Science and

Engineering, 31 Oct. – 2 Nov. 2016.

[5] P. Hingston, “A Turing Test for Computer Game

Bots,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 1, no. 3, September

2009, pp. 169-186.

[6] Nguyen, Hieu V., and Li Bai. "Cosine similarity

metric learning for face verification." Asian

Conference on Computer Vision. Springer Berlin

Heidelberg, 2010.

http://www.ufe3d.com/
http://unity3d.com/
https://msdn.microsoft.com/ja-jp/library/aa984108(v=vs.71).aspx
https://msdn.microsoft.com/ja-jp/library/aa984108(v=vs.71).aspx

