

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Computer Science and Engineering

in the Graduate School of the

University of Aizu

Towards Building a Machine Learning-

based AI System for the Game of Soccer

by

m5171132

Seishu Itabashi

B.S. (the University of Aizu) 2013

Reviewed by

Professor Maxim Mozgovoy, Main Referee

Professor Igor Lubashevsky,

Professor Vitaly Klyuev

March 2015

The thesis titled

"Towards Building a Machine Learning-based AI System for the Game of Soccer"

by

m5171132

Seishu Itabashi

is approved

Main referee Date

Date

Date

University of Aizu

Spring 2015

iii

Index
Index .. iii

List of Figures, List of Tables ... iv

Acknowledgments.. v

Abstract ... vi

1 Introduction .. 1

2 Fundamental Technologies ... 3

2.1 Support Vector Machine .. 3

2.2 The AI Agent Team Program: agent2d .. 6

2.3 TRACAB ... 7

3 Proposed Scheme .. 8

3.1 Overview .. 8

3.2 Data Format of Real Soccer Recordings .. 9

3.3 Model of Proposed System .. 11

3.4 System Controller: rs_analyzer.rb .. 13

3.5 Pass Timing Classifier: learner.rb .. 13

3.6 Success of Pass Classifier: predict.rb... 14

3.7 Improved Team Program: agent2d_svm .. 15

3.8 The Visualizer of Real Soccer Recording .. 16

4 Experiment and Result.. 16

4.1 Experiment ... 16

4.2 Environment ... 17

4.3 Result ... 18

5 Discussion ... 19

6 Conclusions .. 20

Reference ... 22

Appendix .. 24

iv

List of Figures, List of Tables
List of Figures

1 Screenshot of Robocup 2D simulator... 2

2 Space that performed by two vectors ... 4

3 Large numbers of lines that can classify two patterns completely can be drawn 4

4 Surface for discrimination on maximum margin ... 4

5 The pattern that cannot identify by line ... 5

6 Translated projection of patterns .. 5

7 The field and cameras of TRACAB ... 7

8 The whole model of proposed system .. 12

9 Visualization of real soccer recordings .. 16

10 Model of Robocup 2D simulator .. 17

List of Tables

1 Description for chunk 2 in real soccer data set .. 10

2 Description for chunk 3 in real soccer data set .. 10

3 Data format of text file for training with detecting kick timing 14

4 Data format of text file for training with pass route evaluation 15

5 The pass success rate of natural agent2d .. 18

6 The pass success rate of agent2d_svm ... 19

v

Acknowledgments
I would like to thank Professor Mozgovoy who helped my writing the master thesis.

He gave me a lot of idea to think up my scheme and got data set of real soccer used in

this thesis. If he did not help me, I could not write this work.

Abstract
The development of procedure to build the soccer AI on the basis of observations of

real soccer games and machine learning is and important topic for people who study

team sport games, such as soccer. A skillful soccer AI system can further reveal

successful game tactics and help develop better soccer video games. However, it is

difficult to implement such AI with hand-coded rules. The purpose of this study is to

contribute to the process of building data-driven AI for soccer with the help of real

soccer recordings and machine learning techniques.

In the present work we will consider an important subproblem of pass analysis. We

will analyze real soccer recordings to learn which game situations are suitable for

passes, and which passes have sufficient probability to reach their receivers. The

scheme relies on the learning model built with LIBSVM, a popular library of Support

Vector Machines procedure. Furthermore, we will compare the proposed method of

pass success/failure prediction with the method implemented in the open source

soccer agent team program called agent2d. Finally, we will evaluate both original and

modified agents within the framework of a well-known 2D soccer engine Robocup 2D

soccer simulator. As a result, while the pass success rate of the original agent2d was

not surpassed, I made a number of important observations and have suggestions for

further improvements of the proposed AI algorithm.

At the introductory part, the background and motivation of this work are explained.

Next, the fundamental technologies and the scheme to build AI are explained. Finally,

the environment and result of experiment by using AI that is built by proposed

scheme, consideration for result, and conclusion are provided.

1

1 Introduction

Experimenting with human behavior via human-computer interaction is a

challenging and interesting topic with many open problems. A challenge to give the

artificial intelligence the ability for judgment by means of a variety of methods was

addressed in numerous projects, but nothing comes to get equal with high-level

circumstantial judgment ability of humans until now[1]. The development of high-

quality artificial intelligence supports the possibility of high-quality simulation and

analysis, and can contribute to the development of nearly every research field[2].

However, the human circumstantial judgment is based on analysis and interpretation

of large amounts of data[3], so it is very difficult to implement the ability for equal-

level circumstantial judgment of AI with hand-coded rules[4].

In this work I analyze the process of building an AI system by learning from real

soccer recording as one of the way to solve the problem. Soccer is the sport where the

situation on the field changes rapidly, and the cooperation of many people is required.

In addition, it is very popular worldwide, and is commonly used for general studies of

team tactics with the help of virtual soccer simulators. The progress of the artificial

intelligence development techniques in soccer helps researchers of sport tactics,

soccer coaches, and people who develop soccer video games. Furthermore, it has the

possibility to be applied in many other fields where the artificial intelligence is used.

For our experiments, I use Roboup 2D soccer simulator. Robocup is a domain

where AI research and robotics do meet[5]. There are various leagues in Robocup and

numerous research and development activities are conducted in each league. In the

RoboCup soccer, it is regarded as important to win soccer games in competition.

Furthermore, it is required that the ball is controlled securely. Among Robocup

leagues, Robocup 2D soccer simulator represents the simplest environment. Each

agent and ball is shown just as a circle on a two-dimensional field. An actual

screenshot of simulator is shown in Figure 1. In this environment, the developers can

concentrate on pure AI development. Due to its popularity, Robocup 2D soccer

simulator is the most mainstream simulator to research tactics of the soccer and the

circumstantial judgment of the AI agent.

2

As environment for research, we used Ruby 1.9.3 for programming the scripts that

analyze the recording of real soccer game and construct learning models from

analyzed data set. Furthermore, we use JavaScript and HTML5 for the visualization of

the recordings of real soccer game recordings. In addition, I adopted the open source

AI agent team program agent2d[6] to use in the simulator, and to implement the

proposed scheme. The agent2d system can work as a sample team in Robocup 2D

soccer simulator alone and has high extensibility. When agents in the program

agent2d do the action in simulation, they generate numbers of actions that they do in

the current state, and evaluate these generated actions based on information that

agents has. The information includes seeing, hearing, and their own condition. Each

agent independently gathers and processes incoming information. My idea was to

improve the evaluation method of the agent2d. Similarly, I used Support Vector

Machine as an algorithm of machine learning and decision making.

In the next section we will discuss the fundamental technologies used. Next, we

will consider the proposed scheme in detail. Finally, the results obtained with the

proposed scheme and the ideas for future improvements, and the discussions are

provided.

Figure 1. Screenshot of Robocup 2D soccer simulator

3

2 Fundamental Technologies

2.1 Support Vector Machine

Support Vector Machine is one of the algorithms for classification and

discrimination. The original algorithm of Support Vector Machine was invented by

Vladimir N. Vapnik and the current standard incarnation that is called soft margin was

proposed by Vapnik and Corinna Cortes in 1993, and published in 1995[7]. Support

Vector Machine is one of the best method to solve the classification and

discrimination problem. Recently, it is expected to be improved by applying the

method of deep learning[8]. Support Vector Machine possesses following three

features[9]:

1. Discrimination surface is constructed by margin maximization policy. For this

reason, we can expect high generalization ability.

In the linear discrimination problem on two-dimensional space like Figure 2, one of

the way to solve problem is making the border to classify two patterns that belong to

different class. In this thesis, I call the border that is decided to classify patterns

surface for discrimination. In this example, surface for discrimination is just one line

because of this problem is on two-dimensional space. Large numbers of lines that can

classify two patterns completely can be drawn like Figure 3.

4

Generally, pattern recognition algorithm needs to identify unknown pattern not

only known pattern. Considering from this viewpoint, the best surface for

discrimination goes along just center of two already known patterns. This means

surface for discrimination goes along the point as distance between that and nearest

already known pattern is maximum like Figure 4. The distance is called margin.

Statistically, when this way to decide surface for discrimination is adopted,

probability of the pattern identified correctly becomes highest. It is expected that

Support Vector Machine has high generalization ability because Support Vector

Machine adopts this way to decide the surface for discrimination.

Figure 2. Space that performed

by two vectors

Figure 2. Space that performed

by two vectors

Figure 3. Large numbers of lines

that can classify two patterns

completely can be drawn

Figure 3. Large numbers of lines

that can classify two patterns

completely can be drawn

Figure 4. Surface for discrimination on maximum margin

5

2. Local optimal solution problem is never occurred.

Generally, learning machine decides the surface for discrimination by using already

known pattern and updating the parameters of a machine. This process is called

training. In other algorithms that use backpropagation, like neural networks, a local

optimal solution problem can be obtained if training stops in the local area. In Support

Vector Machine, the process of training relies on the square optimization problem

using the method of Lagrange multipliers. In the square optimization problem, the

local optimal solution must be same the solution in wider area. Because of this reason,

the local optimal solution problem is never obtained in Support Vector Machine.

3. Support Vector Machine adopts kernel function.

Some pattern recognition problem cannot be identified linearly. For example, in the

problem shown in Figure 5, it cannot be defined border line that can classify those

two patterns correctly. However, it can be defined border line that can classify the

patterns correctly by translation the space by the function that changes value 𝑥2 to

(𝑥1 + 1) times of 𝑥2 (see Figure 6).

The space that is translated by function like this case is called feature space. High

generalization is expected by reflecting prior knowledge about the pattern to the

function to translate, however, it is needed that computing about the positions of each

patterns in space expressly to define the function to translate. For this reason, the

function that is called kernel function is defined in substitution for the function to

translate in Support Vector Machine. The kernel function is performed like 𝐾(𝑥, 𝑥′)

and gives the way to compute inner product of two patterns in feature space directly

Figure 5. The pattern that

cannot identify by line

Figure 5. The pattern that

cannot identify by line

Figure 6. Translated patterns in

space

𝑥2

𝑥2

𝑥2

𝑥2

𝑥1

𝑥1

6

without computing the positions of each patterns in space expressly. This feature

often reduces computational complexity. Generally, the approach that reduces

computational complexity and extends the way to analyze to high-dimensional feature

space based on inner product by using kernel function is called kernel trick. The

kernel function has various type. In this thesis, I adopt the Gaussian kernel. The

Gaussian kernel is one of the most often used kernel and can be used general-purpose.

The Gaussian kernel is expressed with the following formula[10];

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝⁡(−γ‖𝑥 − 𝑥′‖2)

In this formula, γ is parameter that is adjusted by user.

Furthermore, Support Vector Machine is implemented in many libraries and can be

used in various environments. In this work I relied on LIBSVM — a library of

Support Vector Machine developed by Chih-Chung Chang and Chih-Jen Lin. This

library has extensive API, and much used in academic field[11].

2.2 The AI Agent Team Program: agent2d

The open source AI team program agent2d is one of the team programs for

Robocup 2D soccer simulator. The program agent2d is created in 2006 and kept

developing by Hidehisa Akiyama[12]. The program agent2d can exhibit the minimum

function to work as a sample AI agent team on a simulator natural. The agents gather

information by themselves and store that for decision-making. The information

includes seeing, hearing, and their own condition. The condition includes stamina,

and speed. The seeing and hearing of agents are implemented as following process.

Each agent gets message that includes the information that each agent saw (for

example, position of other players and ball, line of field, goal) and heard (for example,

what referee say, what other players say) in field from server every cycle. When

agents need the information to make decision, agents extract the information they

need from message. These information values are not necessary always correct

because they are not always up-to-date. Because the agents gather information by

using their own sight and ears, there is a limit of range for gathering information. The

agents evaluate reliability of their data from elapsed time from getting information.

They generate numbers of actions (for example, tackle or kick the ball) that they will

do in the next cycle and evaluate each action based on information and reliability each

cycle. When they kick the ball, they generate numbers of routes for kick the ball and

evaluate each routes based on information and reliability. When they do each action,

they compute the information required to evaluate. For example, they compute the

7

distance from position of receiving point to position of nearest opponent and position

of receiver based on the information they have when they do the pass action. Numbers

of conditional expressions are implemented in the file sample_field_evaluator.cpp of

agent2d, and the evaluation score increases or decreases on the basis on conditional

expressions and computed information. Finally, the agents try to perform the action

that has the highest evaluation score.

2.3 TRACAB

TRACAB is one of the tracking system for real game of soccer invented by Chyron

Hego in Sweden[13]. Development of TRACAB started early in 2003. This project

aimed of creating a system capable of delivering real-time positioning of objects in

sports. TRACAB enables real-time tracking of players, ball, and referee, and

exporting the data set by using exclusive sixteen cameras and software (see Figure 7).

The original technology was intended to support military projects of SAAB, one of

the military companies in Sweden[14], and was used for data processing. Later this

technology was adopted in FIFA World Cup 2010 as an official data tracking system.

Furthermore, this technology was also adopted in Premier League, Bundesliga, and La

Liga. The data set in this thesis is created with this system.

Figure 7. The field and cameras of TRACAB

Figure 7. The field and cameras of TRACAB

8

3 Proposed Scheme

3.1 Overview

This scheme enables to build AI agent that has the method to evaluate pass route

based on machine learning and real soccer recording. This scheme adopts both

LIBSVM and original agent2d method to evaluate pass route. Because I estimate that

adopting both method give more performance to the scheme because LIBSVM learns

just the distance between the pass sender and the pass receiver, the distance between

the pass sender and the nearest opponent, and the distance between the pass receiver

and the nearest opponent in this scheme, and original agent2d method can use other

information (for example, distance from goal line, distance from touch line) to judge.

It is expected that improvement of performance by evaluation by each method

independently and adding up the scores. The flow is description below.

1. The timing of player who perform the pass action is extracted from real soccer

recording, and written to the annotated text file (it describes the timing of player pass

action) by the script learner.rb.

2. LIBSVM reads the text file that is written in step 1, learns the situations when the

player passed/did not pass the ball, and outputs the learning model for detecting the

pass timing.

3. The pass timing is detected by LIBSVM from real soccer recording.

4. The timing of the pass success/failure is judged from extracted pass timings, and the

annotated text file (it describes whether pass is successful or not), is created by the

script predict.rb.

5. LIBSVM reads the text file that is written in step 4, learns the situation when the pass

succeeds/fails, outputs the learning model for prediction that the pass will succeed or

fail judging using the current situation.

6. The team program agent2d_svm reads the learning model produced during the step

5.

7. When the agents in team program agent2d does the pass action in the simulator, they

generate numbers of pass routes, evaluate each routes, and give score based on

evaluation method of the team program agent2d.

8. The agents in the program agent2d call the LIBSVM and give the information that

they gathered in current state and where they will pass the ball in next state to

LIBSVM. LIBSVM predicts the success probability of the pass based on given

information and learning model produced in the step 5. When the prediction of

LIBSVM is success, the evaluation score is increased. When it is not, the score is

9

decreased.

9. The agents make decision based on the evaluation score.

3.2 Data Format of Real Soccer Recordings

The data set of real soccer recording used in this thesis consists of colon-separated

main chunks. They can be Integer or String chunks. Strings can be just strings or they

can be arrays of objects represented as strings. In the latter case the positions in the

array are separated with semicolons. The individual properties of each object are

separated with commas.

The data set of real soccer recordings consists of three main chunks. The first is an

integer chunk containing the frame count of the current frame. The frame count is

unique for each frame, and is generated by the tracking system. The second chunk is

an array of 29 player and referee candidate target objects. The last chunk is an array

of one object: the ball.

The chunk 1 is just integer data. The data type of chunk 2 is string-represented

array of up to 29 objects. Each object contains the properties shown in Table 1. The

data type of chunk 3 is a string-represented array of one object. This object contains

the properties shown in Table 3[15].

10

Properties Valid values Remarks

Target's assigned team 0 or 1 or 3, integer 1=Hometeam,

0=Awayteam, 3=Referee.

Other values are used for

internal purposes.

System target ID 1 to 29, integer

Assigned jersey number -1, or 1 to 99, integer Jersey numbers are 1-99.

Jersey -1 is “unassigned”

except for team 3 (the

referee).

Pitch position x -5250 to 5250, float

Pitch position y -3400 to 3400, float

Properties Valid values Remarks

Pitch position x -5250 to 5250, float

Pitch position y -3400 to 3400, float

Pitch position z 0 to infinity, float Note that the position of

the ball center is

displayed. Normal z

position for a ball on

ground is thereby 10 cm.

Ball owning team “H” or “A”, string “H”=Hometeam,

“A”=Awayteam

Ball status “Alive” or “Dead”, string “Alive”=In play,

“Dead”=Not in play

Table 1. Description for the chunk 2 in real soccer data set

Table 2. Description for the chunk 3 in real soccer data set

11

3.3 Model of Proposed System

The whole model of system that is proposed in this thesis is shown in Figure 8. The

script rs_analyzer.rb is the script that executes all other scripts and LIBSVM in this

system. The user of this system can call all function of system by using this script.

The script learner.rb is the script to make text file for training to detect the timing that

the player did the kick action. This script reads the real soccer recordings data set and

outputs text file for the training phase. The script predict.rb is the script to make text

file for training to classify the pass action. This script reads the real soccer recordings

data set and identifies the timing that player did the pass action by using learning

model that is made by the script learner.rb and LIBSVM. Furthermore, the script that

classifies the kick action is success or not and outputs the text file for training. The

script rs_svm.rb is the script to use LIBSVM from Ruby. This script is called by the

script predict.rb and provides the way to use LIBSVM. The team program

agent2d_svm is the team program for Robocup 2D simulator based on the program

agent2d. The program sample_field_evaluator.cpp in this team program reads the

learning model file made by the script predict.rb, and evaluates the pass route based

on prediction of LIBSVM. This system enables AI agent for Robocop 2D simulator to

be able to evaluate the pass route based on learning from the real soccer recording

data set by this using these scripts. The script field_visualize.rb and visualize.html are

the scripts that visualize the real soccer recordings data set. The details of the scripts

in this system are described following section.

12

Figure 8. The whole model of proposed system

User

User

rs_analyzer.rb

rs_analyzer.rb

field_visualize.rb

field_visualize.rb

visualize.html

visualize.html

learner.rb

learner.rb

predict.rb

predict.rb

rs_svm.rb

rs_svm.rb

LIBSVM

LIBSVM

real_log_data.lo

g

real_log_data.lo

g

a_svm.model

a_svm.model
k_svm.model

k_svm.model

learning_for_detectPass.txt

learning_for_detectPass.txt
learning_for_agent2d.txt

learning_for_agent2d.txt

agent2d_svm

agent2d_svm
sample_field_evaluaor.cpp

sample_field_evaluaor.cpp

Scripts

Scripts

Dataset of Real Soccer

Dataset of Real Soccer

Text Files for Training

Text Files for Training

Learning Model for SVM

Learning Model for SVM

control

control
call

call

read

read

call

call

call

call

call

call

export

export

read

read

read and export

read and export

call

call

call

call

13

3.4 System Controller: rs_analyzer.rb

The script rs_analyzer.rb is the controller of the whole system. This script calls the

functions of other scripts and LIBSVM upon user request.

3.5 Pass Timing Classifier: learner.rb

The script learner.rb can read the real soccer recording data set and output the text

file for training. When this script is called, it starts reading real soccer recordings data

set and writes to the text file for training in the file format of LIBSVM library. In this

thesis, I defined the timing that the player did the pass action on the following

conditions:

 Ball moved distance in one time frame exceeds 100 cm.

 The margin between ball moved distance in previous time frame and current time

frame exceeds 100 cm.

If data in the time frame fulfills these two conditions, the script learner.rb classifies

the time of the frame as “pass action”. Otherwise, the script classifies the time frame

as “no pass action”.

The text file that is written by this script includes the parameters shown in Table 3.

The sample string of this text file is description is shown below:

1 1:4.242640687119285 2:3030.694309890062 3:3026.451669202943

14

Name Index number Valid value Remarks

Class nothing 0 or 1, integer 1=pass frame

0=no pass frame

Ball move distance in the

previous time frame

1 0 to infinity, float Computed from

positions.

Ball move distance in the

current time frame

2 0 to infinity, float Computed from

positions.

The difference between

the previous and the

current ball move

distance

3 0 to infinity, float Computed from

positions.

3.6 Success of Pass Classifier: predict.rb

The script predict.rb can read the real soccer recording data set and call the

LIBSVM to predict the time when player did the kick action. Furthermore, this script

outputs the text file for training to evaluate the pass route from predicted time frame.

In this thesis, I defined the success of pass action with following conditions:

 When ball-possessing player changed after pass action, the ball-possessing player

is not same as the player that kicked the ball.

 When ball-possessing player changed after ball was kicked by the original player,

the ball-possessing team is the same as the team that kicked the ball.

If data in the time frame fulfills these two conditions, the script predict.rb classifies

the pass action as “success”. If the-possessing player is changed after pass action and

the ball-possessing team is changed, the script predict.rb classifies the pass action as

“failure”.

The text file produced by this script includes the parameters shown in Table 4.

Whole parameters are divided by 10 000 to adjust to Robocup 2D simulator. A

sample string of this text file is shown below:

Table 3. Data format of text file for training with detecting kick timing

15

1 1:0.19254674757055754 2:0.06627367501504651 3:0.07380027100221244

Name Index number Valid value Remarks

Class nothing 0 or 1, integer 1=success

0=failure

The distance between

the pass sender and

the pass receiver

1 0 to infinity, float Computed from

positions.

The distance between

the pass sender and

the nearest opponent

2 0 to infinity, float Computed from

positions.

The distance between

the pass receiver and

the nearest opponent

3 0 to infinity, float Computed from

positions.

3.7 Improved Team Program: agent2d_svm

The program agent2d_svm is the team program for Robocup 2D simulator based on

agent2d-3.1.1. The base program agent2d evaluates the probability of successful pass

as explained in the previous section. The program agent2d_svm implements an

additional evaluation method. The program agent2d_svm uses additional evaluation

method based on prediction by Support Vector Machine. When agent2d_svm passes

the ball, agent2d_svm generates the pass routes and evaluates each pass routes

similarly to agent2d. In addition, agent2d_svm calls LIBSVM with the information of

the distance between the pass receiver and the nearest opponent, the distance between

the pass sender and the nearest opponent, and the distance between the pass sender

and the pass receiver to LIBSVM. If the prediction of LIBSVM is “success”, the

evaluation score is increased. If the prediction is “failure”, the evaluation score is

decreased. Finally, the program agent2d_svm selects the pass route that has the

highest evaluation score. When the evaluation score is lower than some other action

Table 4. Data format of text file for training with pass route evaluation

16

(for example, tackle), the agents do not initiate pass, and do another action that has the

highest evaluation score.

3.8 The Visualizer of Real Soccer Recording:

field_visualize.rb and visualize.html

These scripts implement the capability to visualize the real soccer recording data

set. The script field_visualize.rb shows the size of the soccer field and opens the

visualize.html. The html document visualize.html reads the real soccer recordings data

set and draws the whole field of data set by using canvas method on HTML5 and

Javascript (see Figure 9). This function is useful to check the data set and debugging.

4 Experiment and Result

4.1 Experiment

For testing the performance of AI that is improved by proposed scheme, I made the

match that two AI agent teams compete each other on Robocup 2D soccer simulator.

One of the team is the original agent2d, the other is agent2d_svm. The match is

carried out ten times. Finally, I got the log data of these ten matches. I analyzed the

data and computed the pass success rate. In this thesis, the pass success is defined that

Figure 9. Visualization of real soccer recordings

17

when the agent which kicked the ball is not same as the agent that kicked the ball

previous time, these two agents belong to same team. Furthermore, pass success rate

is also defined as following formula:

𝑃𝑎𝑠𝑠⁡𝑆𝑢𝑐𝑐𝑒𝑠𝑠⁡𝑅𝑎𝑡𝑒

= ⁡𝑃𝑎𝑠𝑠⁡𝑆𝑢𝑐𝑐𝑒𝑠𝑠⁡𝑇𝑖𝑚𝑒𝑠 (𝑃𝑎𝑠𝑠⁡𝑆𝑢𝑐𝑐𝑒𝑠𝑠⁡𝑇𝑖𝑚𝑒𝑠 + 𝑃𝑎𝑠𝑠⁡𝐹𝑎𝑖𝑙𝑢𝑟𝑒⁡𝑇𝑖𝑚𝑒𝑠)⁄

4.2 Environment

In this work, we used the Robocup 2D simulator. Robocup 2D simulator is initially

created by Itsuki Noda in 1993 and developed by a number of contributors. The last

stable version of the simulator is dated 2005[16]. This means the simulator attained full

maturity, so the developers of teams do not need to implement new rules and

functions anymore. The simulator adopts the Client-Server model to implement the

dispersed multi-agent system. The model of the simulator is shown in Figure 10:

rcssserver is the server program of the simulator, and rcssmonitor is the program for

visualization of the simulation. Several agents communicate to the server

independently. This means that several agents are also controlled independently.

Several agents can communicate each other via rcssserver. In this work we will use

rcssserver-15.2.2 and rcssmonitor-15.1.0. The environment of the experiment Ubuntu

(one of the Linux distributions).

 rcssmonitor

rcssserver

agent

agent

agent

agent

agent

agent

communication

communication communication

Figure 10. Model of Robocup 2D simulator

18

4.3 Result

The pass success rate of the original agent2d is shown in Table 5. The pass success

rate of agent2d_svm is shown in Table 6.

Match Pass times Success Failure Rate[%]

1 110 82 28 74

2 123 88 35 71

3 99 67 32 67

4 101 71 30 70

5 107 76 31 71

6 98 74 24 75

7 90 60 30 66

8 104 75 29 72

9 105 82 23 78

10 107 78 29 72

Total 1044 753 291 72

Table 5. The pass success rate of natural agent2d

19

Match Pass times Success Failure Rate[%]

1 98 71 27 72

2 116 82 34 70

3 97 65 32 67

4 105 75 30 71

5 102 70 32 68

6 91 67 24 73

7 92 63 29 68

8 98 69 29 70

9 106 82 24 77

10 104 76 28 73

Total 1009 720 289 71

The total rate of original agent2d is 72% and one of agent2d_svm is 71%.

Comparing two results, pass success rate of agent2d_svm is lower 1% than pass

success rate of the original agent2d, so the performance results of these two systems

are comparable.

5 Discussion

As it can be seen, the modified agent2d_svm shows comparable performance with

the original agent2d. I can suggest the following reasons for not surpassing the

original algorithm in terms of pass success rate.

First, the learning model produced by learner.rb can be improved. The script

learner.rb exports the text file to train for detect the timing that the player did the pass

action. This part is very important because it relate to the whole procedure after this

step. In the script learner.rb, I defined the condition of detect the pass timing. The

condition in this thesis adopts just ball moved distance (see Section 3.5). This

condition can be changed to a more advanced formula to increase accuracy. Similarly,

Table 6. The pass success rate of agent2d_svm

20

the attributes that are stored in the text file for training can be modified to advance

accuracy. For example, the speed of the ball.

Second, it is possible to improve the learning model of predict.rb. The script

predict.rb exports the text file to train for additional evaluation method based on

Support Vector Machine for the pass action. However, the conditions that I defined to

classify the pass as success or failure are derived from observation, and are correct to

a certain degree. The attributes in text file for training provided by predict.rb,

however, can modified to a certain degree. The distance to the nearest opponent and

the distance between the passer and the receiver are used now. The implementation

the function for computing the rate of threat from situation and some formula might

help to advance the performance of agent2d_svm.

Third, it is possible to change the algorithm. In this thesis, I tried to improve

agent2d with Support Vector Machine. However, the algorithm can be improved and

we can use it to improve the scheme. I can suggest to try to use the Support Vector

Machine with deep learning that I introduced in this thesis.

Finally, the real soccer recordings show the behavior of real, not ideal, teams. They

also can perform unsuccessful pass actions, and thus our agent2d_svm could learn

these erroneous patters. However, I do not see it as a problem, since the real task of

learning from real data is to create a human-like AI, not the most skillful AI.

6 Conclusions

In this thesis, I tried to build a new scheme to develop an AI agent for soccer based

on real soccer recording and machine learning. I achieved that and tested the

performance of AI agent made according to the proposed scheme. As a result, the

hints to improve AI agent for soccer by machine learning and real soccer recording

are given. Proposed scheme enables to analyze and visualize real soccer recording.

Furthermore, the scheme enables to make learning model for Support Vector Machine

by learning from annotated data of real soccer recording. Finally, the scheme enables

AI agent for soccer to get additional evaluation method that is to evaluate the pass

route based on prediction by Support Vector Machine.

It is possible to improve the behavior performance by changing or adding attributes

into the scripts learner.rb and predict.rb. There are many options to change in the

attributes in text file for making learning model. Furthermore, the conditions for

definition of pass timing have room for improvement, too. There are many options to

21

improve the proposed scheme, since the attributes and the conditions for learning

have many combinations.

Finally, I could build the scheme to build AI agent team based on real soccer

recording and machine learning. Furthermore, it became clear the scheme has the

room for improvement and the hints to improve scheme were given through the

experiment.

22

Reference
[1] Makoto Nagao, 1992, “Jinkou Chinou To Ningen (Artificial Intelligence and

Human)”, Iwanami Shinsho, 248

[2] Jason Brownlee, “Practical Machine Learning Problems”,

http://machinelearningmastery.com/practical-machine-learning-problems/ (December

13 2014)

[3] Yanai Kohsuke, Mita Hideyuki, Iba Hitoshi, “Robot learning of cooperative

behavior using Genetic Programming”, http://ci.nii.ac.jp/naid/110003187220

(December 13 2014)

[4] Junichiro Hirayama, Thawonmas Ruck, “Applying of Human Decision-Making

Behaviors to RoboCup Software Agnets”, http://ci.nii.ac.jp/naid/110003187272/

(December 13 2014)

[5] Katsuhiro Yamashita, Tomoharu Nakashima, Hidehisa Akiyama, “Constructing

Prediction Models of Opponent Positions in RoboCup Soccer”,

http://winnie.kuis.kyoto-u.ac.jp/sig-challenge/SIG-Challenge-B301/SIG-Challenge-

B301-03.pdf (December 6 2014)

[6] agent2d, http://rctools.sourceforge.jp/pukiwiki/index.php?agent2d (December 6

2014)

[7] Takashi Onoda, “Support Vector Mahine no Gaiyo (The outline of Support Vector

Machine)”, http://www.orsj.or.jp/~archive/pdf/bul/Vol.46_05_225.pdf (December 6

2014)

[8] Yichuan Tang, “Deep Learning using Linear Support Vector Machines”,

http://deeplearning.net/wp-content/uploads/2013/03/dlsvm.pdf (December 6 2014)

[9] Computational Intelligence Lab (Ritsumeikan University), “Support Vector

Machine”, http://www.sys.ci.ritsumei.ac.jp/project/theory/svm/svm.html (December 6

2014)

[10] Asa Ben-Hur, Jason Weston, “A User's Guide to Support Vector Machines”,

http://pyml.sourceforge.net/doc/howto.pdf (December 6 2014)

23

[11] Chih-Chung Chang, Chih-Jen Lin, “LIBSVM — A Library for Support Vector

Machines”, http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (December 6 2014)

[12] Robocup tools agent2d releases,

http://sourceforge.jp/projects/rctools/releases/55186 (December 17 2014)

[13] TRACAB, http://tracab.hegogroup.com/ (December 6 2014)

[14] SAAB, http://www.saabgroup.com/ (December 17 2014)

[15] Data Stadium, www.datastadium.co.jp/index.html (December 6 2014)

[16] Hidehisa Akiyama, “Robocup 2D Guide Book - 1.0”,

http://iij.dl.sourceforge.jp/rctools/46021/RoboCup2DGuideBook-1.0.pdf (December 6

2014)

24

Appendix
rs_analyzer.rb---

require "./rs_svm.rb"

require "./predict.rb"

require "./learner.rb"

require "./field_visualize.rb"

puts "Exit:exit lerningModel for detect pass:0 learningModel for agent2d:1 Visualize:2"

while str = STDIN.gets

 if str.chomp == "exit" then

 break

 elsif str.chomp == "0"

LearningF = LearningFileEx.new()

 LearningF.leaningFileExport("./real_log_data.log")

 /input parameter to C and gamma/

 system("svm-train -c 8192.0 -g 0.000030517578125 learning_for_detectPass.txt

k_svm.model")

 elsif str.chomp == "1"

 Predict = PredictKick.new()

 Predict.predictKick("./real_log_data.log")

 /input parameter to C and gamma/

 system("svm-train -c 8.0 -g 8.0 learning_for_agent2d.txt a_svm.model")

 elsif str.chomp == "2"

 Field = Field_visualize.new()

 Field.fieldsize_comp("./real_log_data.log")

 Field.visualization("./real_log_data.log")

 end

puts "Exit:exit lerningModel for detect pass:0 learningModel for agent2d:1 Visualize:2"

end

25

learner.rb---

/

This script makes text file for training to detect pass timing

/

class LearningFileEx

 def leaningFileExport(input_file)

 /data set/

 f = File.open(input_file,'r')

 /text file for learning/

 fw1 = File.open("./learning_for_detectPass.txt",'w')

 /The array for contain the divided data set/

 chunk = Array.new()

 players_and_referee = Array.new()

 mans_data = Array.new(6)

 ball_data = Array.new(7)

 /The array to store previous state/

 mans_data_pre = Array.new(6)

 ball_data_pre = Array.new(7)

 /flag to recognize the top of file/

 fir_flag = 0

 /ball owning player number/

 ball_own_pl = 0

 /ball moved distane in previous state/

 ball_moved_pre = 0

 /ball owning team/

 ball_own_team = 0

26

 count = 0

 sum = 0

 /ball moved distance in current state/

 ball_moved = 0

 a=0

 b=0

 f.each do |line|

 count = count + 1

 dist_bp_min = 1000000.0

 chunk = line.split(":")

 players_and_referee = chunk[1].split(";")

 ball_data = chunk[2].split(",")

 if fir_flag == 1 then

 ball_moved_pre = ball_moved

 ball_moved = Math.sqrt((ball_data[0].to_f-ball_data_pre[0].to_f)*(ball_data[0].to_f-

ball_data_pre[0].to_f)+(ball_data[1].to_f-ball_data_pre[1].to_f)*(ball_data[1].to_f-ball_data_pre[1].to_f))

 ball_data_pre = ball_data

 else

 fir_flag = 1

 end

 sum = sum + ball_moved

 /chunk[0]:Count

 chunk[1]:ball

 chunk[2]:players_and_referee

 ball_data[0]:X

 ball_data[1]:Y

 ball_data[2]:Z

 ball_data[3]:Speed

 ball_data[4]:owning Team

27

 ball_data[5]:"Alive" or "Dead"

 /

 players_and_referee.each do |p_and_r|

 mans_data = p_and_r.split(",")

 /detecting the ball owning player/

 if mans_data[0] != 3 && dist_bp_min > Math.sqrt((ball_data[0].to_f-

mans_data[3].to_f)*(ball_data[0].to_f-mans_data[3].to_f)+(ball_data[1].to_f-

mans_data[4].to_f)*(ball_data[1].to_f-mans_data[4].to_f)) then

 dist_bp_min = Math.sqrt((ball_data[0].to_f-

mans_data[3].to_f)*(ball_data[0].to_f-mans_data[3].to_f)+(ball_data[1].to_f-

mans_data[4].to_f)*(ball_data[1].to_f-mans_data[4].to_f))

 ball_own_pl = mans_data[1]

 ball_own_team = mans_data[0]

 end

 /

 mans_data[0]:Team(0:Away 1:Home 3:Referee)

 mans_data[1]:Number

 mans_data[3]:X

 mans_data[4]:Y

 mans_data[5]:Speed

 /

 end

 if fir_flag == 1 then

 /Writing to text file as LIBSVM learning file format/

 /ball moved distance, ball moved distance in previous state, the margin between

2 parameters are contained/

 if ball_moved > 100 && ball_moved - ball_moved_pre > 100 && a < 3000 then

 fw1.puts "1 1:" + ball_moved_pre.to_s + " 2:" + ball_moved.to_s + " 3:" +

(ball_moved - ball_moved_pre).to_s

 a = a + 1

 elsif b < 3000

 fw1.puts "0 1:" + ball_moved_pre.to_s + " 2:" + ball_moved.to_s + " 3:" +

(ball_moved - ball_moved_pre).to_s

28

 b = b + 1

 end

 end

 end

 average = sum/count

 f.close

 fw1.close

 end

end

29

predict.rb---

/

This script makes text file for training to evaluate the pass route

/

class PredictKick

 Svm = RsSvm.new()

 def predictKick(input_file)

 /data set/

 f = File.open(input_file,'r')

 /text file for training/

 fw = File.open("./learning_for_agent2d.txt",'w')

 /The array for contain the divided data set/

 chunk = Array.new(3)

 players_and_referee = Array.new(29)

 mans_data = Array.new(6)

 ball_data = Array.new(7)

 /The array to store previous state/

 ball_data_pre = Array.new(7)

 /ball owning player/

 ball_own_man = Array.new(6)

 /passer data/

 pass_starter = Array.new(6)

 pass_start_flag = 0

 kicker_team = 0

 cycle_count = 0

 /distance between passer and enemy/

 dist_enemy_player = 10000.0

30

 fir_flag = 0

 i = 0

 count_flag = 0

 ball_own_pl = 0

 ball_own_pl_pre = 0

 ball_own_team = 0

 ball_moved_pre = 0

 ball_moved = 0

 f.each do |line|

 dist_bp_min = 1000000.0

 chunk = line.split(":")

 players_and_referee = chunk[1].split(";")

 ball_data = chunk[2].split(",")

 if fir_flag == 1 then

 ball_moved_pre = ball_moved

 ball_moved = Math.sqrt((ball_data[0].to_f-ball_data_pre[0].to_f)*(ball_data[0].to_f-

ball_data_pre[0].to_f)+(ball_data[1].to_f-ball_data_pre[1].to_f)*(ball_data[1].to_f-ball_data_pre[1].to_f))

 ball_data_pre = ball_data

 else

 fir_flag = 1

 end

 /chunk[0]:Count

 chunk[1]:ball

 chunk[2]:players_and_referee

 ball_data[0]:X

 ball_data[1]:Y

 ball_data[2]:Z

 ball_data[3]:Speed

 ball_data[4]:owning Team

31

 ball_data[5]:"Alive" or "Dead"

 /

 players_and_referee.each do |p_and_r|

 mans_data = p_and_r.split(",")

 if ball_data[4] == "H" then

 if mans_data[0].to_s == "1" && dist_bp_min > Math.sqrt((ball_data[0].to_f-

mans_data[3].to_f)*(ball_data[0].to_f-mans_data[3].to_f)+(ball_data[1].to_f-

mans_data[4].to_f)*(ball_data[1].to_f-mans_data[4].to_f)) then

 dist_bp_min = Math.sqrt((ball_data[0].to_f-

mans_data[3].to_f)*(ball_data[0].to_f-mans_data[3].to_f)+(ball_data[1].to_f-

mans_data[4].to_f)*(ball_data[1].to_f-mans_data[4].to_f))

 ball_own_man = mans_data

 ball_own_team = ball_data[4]

 end

 elsif ball_data[4] == "A" then

 if mans_data[0].to_s == "0" && dist_bp_min > Math.sqrt((ball_data[0].to_f-

mans_data[3].to_f)*(ball_data[0].to_f-mans_data[3].to_f)+(ball_data[1].to_f-

mans_data[4].to_f)*(ball_data[1].to_f-mans_data[4].to_f)) then

 dist_bp_min = Math.sqrt((ball_data[0].to_f-

mans_data[3].to_f)*(ball_data[0].to_f-mans_data[3].to_f)+(ball_data[1].to_f-

mans_data[4].to_f)*(ball_data[1].to_f-mans_data[4].to_f))

 ball_own_man = mans_data

 ball_own_team = ball_data[4]

 end

 end

 /

 mans_data[0]:Team(0:Away 1:Home 3:Referee)

 mans_data[1]:Number

 mans_data[3]:X

 mans_data[4]:Y

32

 mans_data[5]:Speed

 /

 end

 if Svm.predict_pass(ball_moved_pre,ball_moved,ball_moved - ball_moved_pre) == 1.0 &&

pass_start_flag == 0 then

 pass_start_flag = 1

 pass_starter = ball_own_man

 kicker_team = ball_own_team

 dist_enemy_player = 10000.0

 players_and_referee.each do |p_and_r|

 mans_data = p_and_r.split(",")

 if pass_starter[0] != mans_data[0] && mans_data[0] != "3" &&

dist_enemy_player > Math.sqrt((pass_starter[3].to_f - mans_data[3].to_f)*(pass_starter[3].to_f -

mans_data[3].to_f)+(pass_starter[4].to_f - mans_data[4].to_f)*(pass_starter[4].to_f -

mans_data[4].to_f)) then

 dist_enemy_player = Math.sqrt((pass_starter[3].to_f -

mans_data[3].to_f)*(pass_starter[3].to_f - mans_data[3].to_f)+(pass_starter[4].to_f -

mans_data[4].to_f)*(pass_starter[4].to_f - mans_data[4].to_f))

 end

 end

 count_flag = 1

 end

 if count_flag == 1 then

 cycle_count = cycle_count + 1

 elsif count_flag == 0 then

 cycle_count = 0

 end

33

 if pass_start_flag == 1 && pass_starter[1] != ball_own_man[1] && kicker_team ==

ball_own_team then

 dist_enemy = 10000.0

 players_and_referee.each do |p_and_r|

 mans_data = p_and_r.split(",")

 if ball_own_man[0] != mans_data[0] && mans_data[0] != "3" && dist_enemy

> Math.sqrt((ball_data[0].to_f - mans_data[3].to_f)*(ball_data[0].to_f -

mans_data[3].to_f)+(ball_data[1].to_f - mans_data[4].to_f)*(ball_data[1].to_f - mans_data[4].to_f)) then

 dist_enemy = Math.sqrt((ball_data[0].to_f -

mans_data[3].to_f)*(ball_data[0].to_f - mans_data[3].to_f)+(ball_data[1].to_f -

mans_data[4].to_f)*(ball_data[1].to_f - mans_data[4].to_f))

 end

 end

 distance_pr = Math.sqrt((ball_own_man[3].to_f -

pass_starter[3].to_f)*(ball_own_man[3].to_f - pass_starter[3].to_f)+(ball_own_man[4].to_f -

pass_starter[4].to_f)*(ball_own_man[4].to_f - pass_starter[4].to_f))

 fw.puts "1 1:" + (distance_pr/10000).to_s + " 2:" +

(dist_enemy_player/10000).to_s + " 3:" + (dist_enemy/10000).to_s

 pass_start_flag = 0

 passer_risk = 0

 recieve_risk = 0

 count_flag = 1

 elsif pass_start_flag == 1 && pass_starter[1] != ball_own_man[1] && kicker_team !=

ball_own_team then

 dist_enemy = 10000.0

 players_and_referee.each do |p_and_r|

 mans_data = p_and_r.split(",")

34

 if ball_own_man[0] != mans_data[0] && mans_data[0] != "3" && dist_enemy

> Math.sqrt((ball_data[0].to_f - mans_data[3].to_f)*(ball_data[0].to_f -

mans_data[3].to_f)+(ball_data[1].to_f - mans_data[4].to_f)*(ball_data[1].to_f - mans_data[4].to_f)) then

 dist_enemy = Math.sqrt((ball_data[0].to_f -

mans_data[3].to_f)*(ball_data[0].to_f - mans_data[3].to_f)+(ball_data[1].to_f -

mans_data[4].to_f)*(ball_data[1].to_f - mans_data[4].to_f))

 end

 end

 distance_pr = Math.sqrt((ball_own_man[3].to_f -

pass_starter[3].to_f)*(ball_own_man[3].to_f - pass_starter[3].to_f)+(ball_own_man[4].to_f -

pass_starter[4].to_f)*(ball_own_man[4].to_f - pass_starter[4].to_f))

 /writing to text file for training/

 /file contains distance between passer and reciever, passer and nearest enemy,

reciever and nearest enemy/

 fw.puts "0 1:" + (distance_pr/10000).to_s + " 2:" +

(dist_enemy_player/10000).to_s + " 3:" + (dist_enemy/10000).to_s

 pass_start_flag = 0

 passer_risk = 0

 recieve_risk = 0

 count_flag = 0

 end

 end

 f.close

 fw.close

 end

end

35

rs_svm.rb--

require 'svm'

class RsSvm

 M = Model.new("k_svm.model")

 def predict_pass(dist_pre,dist,distances)

 res = M.predict([dist_pre,dist,distances])

 return res

 end

end

36

field_visualize.rb---

class Field_visualize

 @@max_width = 0.0

 @@max_height = 0.0

 /computing the field size/

 def fieldsize_comp(input_file)

 f = File.open(input_file,'r')

 chunk = Array.new(3)

 ball_data = Array.new(7)

 f.each do |line|

 chunk = line.split(":")

 ball_data = chunk[2].split(",")

 if @@max_width < ball_data[0].to_f && ball_data[5] == "Alive" then

 @@max_width = ball_data[0].to_f

 end

 if @@max_height < ball_data[1].to_f && ball_data[5] == "Alive" then

 @@max_height = ball_data[1].to_f

 end

 /chunk[0]:Count

 chunk[1]:ball

 chunk[2]:players_and_referee

 ball_data[0]:X

 ball_data[1]:Y

 ball_data[2]:Z

37

 ball_data[3]:Speed

 ball_data[4]:owning Team

 ball_data[5]:"Alive" or "Dead"

 /

 end

 puts "Field Width = " + (@@max_width*2).to_s + ", Field Height = " + (@@max_height*2).to_s

 f.close

 end

 /exec the visualizer/

 def visualization(input_file)

 system("firefox visualize.html&")

 end

end

38

visualization.html--

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

 <head>

 <title>visualize</title>

 <script type="text/javascript" src="rsvisualize.js"></script>

 </head>

 <body>

 <form name="log">

 <input type="file" id="selfile">

 </form>

 <canvas id="field" width="725" height="440"></canvas>

 <script>

 var obj1 = document.getElementById("selfile");

 var j = 0;

 //When the file selected, do

 obj1.addEventListener("change",function(evt){

 var file = evt.target.files;

 //Making FileReader

 var reader = new FileReader();

 //Reading as a text

 reader.readAsText(file[0]);

 //Processing after reading

 reader.onload = function(ev){

 var readline = new Array();

 readline = reader.result.split("\n");

 var i = 0;

 while(readline[i] != null){

39

 i++;

 }

 var id = 0;

 id = setInterval(function(){animat(readline,i,id);},40);

 }},false);

 //for animation, using anvas method on HTML5

 function animat(lines,i,id){

 console.log(lines[j]);

 var canvas = document.getElementById("field");

 var ctx = canvas.getContext("2d");

 var canvas_h = canvas.height;

 var canvas_w = canvas.width;

 var chunk = new Array();

 var player_and_referee = new Array();

 var ball_data = new Array();

 var n = 2;

 ctx.fillStyle = "#006400"

 ctx.fillRect(0,0,canvas_w,canvas_h);

 ctx.strokeStyle = "#ffffff"

 ctx.beginPath();

 ctx.moveTo(100,50);

 ctx.lineTo(canvas_w - 100,50);

 ctx.moveTo(canvas_w - 100,50);

 ctx.lineTo(canvas_w - 100,canvas_h - 50);

 ctx.moveTo(canvas_w - 100,canvas_h - 50);

 ctx.lineTo(100,canvas_h - 50);

 ctx.moveTo(100,canvas_h - 50);

 ctx.lineTo(100,50);

 ctx.moveTo(canvas_w/n,50);

 ctx.lineTo(canvas_w/n,canvas_h - 50);

40

 ctx.moveTo(100-55/n,canvas_h/n - 36.6/n);

 ctx.lineTo(100,canvas_h/n - 36.6/n);

 ctx.moveTo(100-55/n,canvas_h/n - 36.6/n);

 ctx.lineTo(100-55/n,canvas_h/n + 36.6/n);

 ctx.moveTo(100,canvas_h/n + 36.6/n);

 ctx.lineTo(100-55/n,canvas_h/n + 36.6/n);

 ctx.moveTo(canvas_w-100+55/n,canvas_h/n - 36.6/n);

 ctx.lineTo(canvas_w-100,canvas_h/n - 36.6/n);

 ctx.moveTo(canvas_w-100+55/n,canvas_h/n - 36.6/n);

 ctx.lineTo(canvas_w-100+55/n,canvas_h/n + 36.6/n);

 ctx.moveTo(canvas_w-100,canvas_h/n + 36.6/n);

 ctx.lineTo(canvas_w-100+55/n,canvas_h/n + 36.6/n);

 ctx.moveTo(100,canvas_h/n - (36.6+55)/n);

 ctx.lineTo(100+55/n,canvas_h/n - (36.6+55)/n);

 ctx.moveTo(100+55/n,canvas_h/n - (36.6+55)/n);

 ctx.lineTo(100+55/n,canvas_h/n + (36.6+55)/n);

 ctx.moveTo(100+55/n,canvas_h/n + (36.6+55)/n);

 ctx.lineTo(100,canvas_h/n + (36.6+55)/n);

 ctx.moveTo(canvas_w-100,canvas_h/n - (36.6+55)/n);

 ctx.lineTo(canvas_w-100-55/n,canvas_h/n - (36.6+55)/n);

 ctx.moveTo(canvas_w-100-55/n,canvas_h/n - (36.6+55)/n);

 ctx.lineTo(canvas_w-100-55/n,canvas_h/n + (36.6+55)/n);

 ctx.moveTo(canvas_w-100-55/n,canvas_h/n + (36.6+55)/n);

 ctx.lineTo(canvas_w-100,canvas_h/n + (36.6+55)/n);

 ctx.moveTo(100,canvas_h/n - (36.6+55+110)/n);

 ctx.lineTo(100+(55+110)/n,canvas_h/n - (36.6+55+110)/n);

 ctx.moveTo(100+(55+110)/n,canvas_h/n - (36.6+55+110)/n);

 ctx.lineTo(100+(55+110)/n,canvas_h/n + (36.6+55+110)/n);

 ctx.moveTo(100+(55+110)/n,canvas_h/n + (36.6+55+110)/n);

 ctx.lineTo(100,canvas_h/n + (36.6+55+110)/n);

 ctx.moveTo(canvas_w-100,canvas_h/n - (36.6+55+110)/n);

 ctx.lineTo(canvas_w-100-(55+110)/n,canvas_h/n - (36.6+55+110)/n);

 ctx.moveTo(canvas_w-100-(55+110)/n,canvas_h/n - (36.6+55+110)/n);

41

 ctx.lineTo(canvas_w-100-(55+110)/n,canvas_h/n + (36.6+55+110)/n);

 ctx.moveTo(canvas_w-100-(55+110)/n,canvas_h/n + (36.6+55+110)/n);

 ctx.lineTo(canvas_w-100,canvas_h/n + (36.6+55+110)/n);

 ctx.stroke();

 ctx.beginPath();

 ctx.arc(canvas_w/n,canvas_h/n,91.5/n,0,Math.PI*2,false);

 ctx.stroke();

 //recognizing the file and drawing the ball

 chunk = lines[j].split(":");

 players_and_referee = chunk[1].split(";");

 ball_data = chunk[2].split(",");

 if(ball_data[5].indexOf("Alive") != -1) ctx.fillStyle = "#f0f8ff";

 else ctx.fillStyle = "#dc143c";

 ctx.beginPath();

 ctx.arc((parseFloat(ball_data[0])+(canvas_w-200)*10)/10/n+100,(parseFloat(ball_data[1])*(-

1)+(canvas_h-100)*10-parseFloat(ball_data[2]))/10/n+50, 5, 0, Math.PI*2, false);

 ctx.fill();

 ctx.strokeStyle = "#8b008b"

 ctx.beginPath();

 ctx.moveTo((parseFloat(ball_data[0])+(canvas_w-

200)*10)/10/n+100,(parseFloat(ball_data[1])*(-1)+(canvas_h-100)*10-

parseFloat(ball_data[2]))/10/n+50);

 ctx.lineTo((parseFloat(ball_data[0])+(canvas_w-

200)*10)/10/n+100,(parseFloat(ball_data[1])*(-1)+(canvas_h-100)*10)/10/n+50)

 ctx.stroke();

 players_and_referee.forEach(p_a_r);

 if(lines[j] == null) clearInterval(id);

 else j++;

42

 }

 //recognizeng file and drawing the player and referee

 function p_a_r(line,index,ar){

 var canvas = document.getElementById("field");

 var ctx = canvas.getContext("2d");

 var canvas_h = canvas.height;

 var canvas_w = canvas.width;

 var n = 2;

 mans_data = line.split(",");

 if(mans_data[0] == 0) ctx.fillStyle = "#FFD700";

 else if(mans_data[0] == 1) ctx.fillStyle = "#800000";

 else if(mans_data[0] == 3) ctx.fillStyle = "#000000";

ctx.fillRect((parseFloat(mans_data[3])+(canvas_w-

200)*10)/10/n+100,(parseFloat(mans_data[4])*(-1)+(canvas_h-100)*10)/10/n+50,3,-13);

 }

</script>

</body>

</html>

43

sample_field_evaluator.cpp--

// -*-c++-*-

/*

 *Copyright:

 Copyright (C) Hiroki SHIMORA

 This code is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 3, or (at your option)

 any later version.

 This code is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this code; see the file COPYING. If not, write to

 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

 *EndCopyright:

 */

//This code is added the fucntion of prediction by SVM to original sample_field_evaluator.cpp

(agent2d-3.1.1/src/).

//If you want to use this evaluator in your team, please replace your sample_field_evaluator.cpp to

this file and ./configure and make again.

//And also, you need install LIBSVM.

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include "sample_field_evaluator.h"

#include "field_analyzer.h"

44

#include "simple_pass_checker.h"

 //libsvm

#include "svm.h"

#include <rcsc/player/player_evaluator.h>

#include <rcsc/common/server_param.h>

#include <rcsc/common/logger.h>

#include <rcsc/math_util.h>

#include <iostream>

#include <algorithm>

#include <cmath>

#include <cfloat>

// #define DEBUG_PRINT

using namespace rcsc;

static const int VALID_PLAYER_THRESHOLD = 8;

svm_node elem[4];

const char *model_filename = "a_svm.model";

svm_model *model = svm_load_model(model_filename);

double score = 0.0;

/*---*/

/*!

 */

static double evaluate_state(const PredictState & state);

/*---*/

/*!

 */

SampleFieldEvaluator::SampleFieldEvaluator()

45

{

}

/*---*/

/*!

 */

SampleFieldEvaluator::~SampleFieldEvaluator()

{

}

/*---*/

/*!

 */

double

SampleFieldEvaluator::operator()(const PredictState & state,

 const std::vector< ActionStatePair > & /*path*/) const

{

 const double final_state_evaluation = evaluate_state(state);

 //

 // ???

 //

 double result = final_state_evaluation;

 return result;

}

/*---*/

/*!

 */

static

46

double

evaluate_state(const PredictState & state)

{

 score = 0.0;

 //getting information for prediction by SVM

 //if predicted good, add same evaluation point as basic score

 double dist_from_ball = 100.0;

 double dist_from_self = 100.0;

 elem[0].index = 1;

 elem[0].value = state.self().distFromBall()/100;

 elem[1].index = 2;

 state.getOpponentNearestTo(state.self().pos(),1,&dist_from_self);

 elem[1].value = dist_from_self/100;

 elem[2].index = 3;

 state.getOpponentNearestTo(state.ball().pos(),1,&dist_from_ball);

 elem[2].value = dist_from_ball/100;

 elem[3].index = -1;

 const ServerParam & SP = ServerParam::i();

 const AbstractPlayerObject * holder = state.ballHolder();

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "========= (evaluate_state) ==========");

#endif

 //

 // if holder is invalid, return bad evaluation

 //

 if (! holder)

 {

47

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) XXX null holder");

#endif

 return - DBL_MAX / 2.0;

 }

 const int holder_unum = holder->unum();

 //

 // ball is in opponent goal

 //

 if (state.ball().pos().x > + (SP.pitchHalfLength() - 0.1)

 && state.ball().pos().absY() < SP.goalHalfWidth() + 2.0)

 {

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) *** in opponent goal");

#endif

 score = 1.0e+7;

 if (svm_predict(model,elem) == 1.0)

 {

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) XXX is predected good");

#endif

 score = score + 1.0e+7;

 }

 else score = score - 1.0e+7;

 return score;

 }

48

 //

 // ball is in our goal

 //

 if (state.ball().pos().x < - (SP.pitchHalfLength() - 0.1)

 && state.ball().pos().absY() < SP.goalHalfWidth())

 {

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) XXX in our goal");

#endif

 score = -1.0e+7;

 if (svm_predict(model,elem) == 1.0)

 {

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) XXX is predected good");

#endif

 score = score + 1.0e+7;

 }

 else score = score - 1.0e+7;

 return score;

 }

 //

 // out of pitch

 //

 if (state.ball().pos().absX() > SP.pitchHalfLength()

49

 || state.ball().pos().absY() > SP.pitchHalfWidth())

 {

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) XXX out of pitch");

#endif

 score = - DBL_MAX / 2.0;

 return score;

 }

 //

 // set basic evaluation

 //

 double point = state.ball().pos().x;

 point += std::max(0.0,

 40.0 - ServerParam::i().theirTeamGoalPos().dist(state.ball().pos()));

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) ball pos (%f, %f)",

 state.ball().pos().x, state.ball().pos().y);

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) initial value (%f)", point);

#endif

 //

 // add bonus for goal, free situation near offside line

 //

 if (FieldAnalyzer::can_shoot_from

 (holder->unum() == state.self().unum(),

 holder->pos(),

 state.getPlayerCont(new OpponentOrUnknownPlayerPredicate(state.ourSide())),

50

 VALID_PLAYER_THRESHOLD))

 {

 point += 1.0e+6;

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) bonus for goal %f (%f)", 1.0e+6, point);

#endif

 if (holder_unum == state.self().unum())

 {

 point += 5.0e+5;

#ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) bonus for goal self %f (%f)", 5.0e+5, point);

#endif

 }

 }

 if (svm_predict(model,elem) == 1.0)

 {

 #ifdef DEBUG_PRINT

 dlog.addText(Logger::ACTION_CHAIN,

 "(eval) XXX is predected good");

 #endif

 point = point + 1.0e+7;

 }

 else point = point - 1.0e+7;

 return point;

}

