
University of Aizu, Graduation Thesis. March, 2015 s1190220 1

Solving Tile-Matching Puzzle game using CSP solver

Shuma Kurihara s1190220 Supervised by Maxim Mozgovoy

Abstract

There are many tile-matching games such as Tetris,

Puyo-Puyo, Colums, Puzzle and Dragons and so on.

To solve tile-matching puzzle games, human players

created a lot of strategies. These strategies are also use-

ful for AI. However, in most of cases, applying these

strategies to AI is very hard and takes long developing

times. Many strategies can be expressed by the set of

constraints. If we regard these methods as CSP and

use CSP solver, to develop these methods might be-

come easier and be finished in a short period. In this

research, we apply this idea to improve the AI of Puyo-

Puyo which is made by Tomizawa [1].

1 Introduction

1.1 The rule of Puyo-Puyo

Puyo-Puyo is one of the tile-matching puzzle games.

Players can move tiles in the field like tetris. The field

has 6 rows and each rows have 13 columns. Tiles have

a color. There are four colors of tiles. Colors are red,

blue, green, and yellow. In this game, the tile is called

a puyo. Puyos are little creatures who fall from the

top of the field in a pair. The pair is called hai-puyo.

Hai-puyo can be moved left and right and rotated. Hai-

puyo falls until it reaches another puyo or the bottom

of the field(figure(1)). Hai-puyo is notified beforehand.

Players can see a current hai-puyo, next one and after

next one. Every time hai-puyo is placed on the bottom

of the field or on the top of another puyo, new hai-

puyo is chosen in randomly. When field is filled by

puyos, players can not select any actions. Then, game

is finished.

When four or more puyos of the same color are

placed near each other to create a group, they disap-

pear. This is called a Rensa(Chain). Individual puyos

can connect horizontally or vertically, but not diago-

nally. The puyos above those that are cleared fall onto

other puyos or the bottom of the field(figure(2)). A

Fluent Rensa(step-chain) is made when falling puyos

form a new group in a chain reaction. When player

make N step-chain, player can get a gain which is pro-

portional to N2. Because the gain increase exponen-

tially, to make long step-chain is important.

Figure 1:

However, since the hai-puyo is chosen in randomly,

it is hard to make a large step-chain. One of the strate-

gies to make a long step-chain easily is Teikei.

1.2 Teikei

Teikei is a good pattern of the opining phase. It is sim-

ilar to chess opening (the book moves) or similar to

joseki in the game of Go. Figure(??) shows domino-

chain which is one of the most famous teikei. This

domino-chain has a potential of 5 step-chain, however

it use only 20 puyos. Without few exceptions, teikei

has characteristics which are the symmetrical arrange-

ment and the compactness. Note that it is no problem

even if red puyos is replaced with yellow puyos. Also,

it is no problem even if red puyos and blue puyos are

swapped.

This idea is very useful for human. and Tomizawa

state that it is also useful for AI [1].



University of Aizu, Graduation Thesis. March, 2015 s1190220 2

Figure 2:

Figure 3:

2 Past research

2.1 tomizawa’s method

Tomizawa proposed a method to make large step-chain

efficiently. The most important idea of his method is to

use teikei.

In his method, we use a evaluation function.This

evaluation function returns a positive value if the state

of the field corresponds to teikei. Or else, this evalua-

tion function returns the value of −∞.

To implement this function, he use two matrices in

this function. One is called state-matrix, another is

called template-matrix. When the size of the field is n,

both matrices has n rows and each rows has n columns.

State-matrix and template-matrix indicate that rela-

tions between two cells which are the same color or the

different color. The (i, j) element of template-matrix

has a positive value if the cell of i and the cell of j must

be the same color. This element has a negative value if

these cells must be different colors. If these cells have

no relation, this element has a zero value. The (i, j) el-

ement of state-matrix is 1 if the cell of i and the cell of

j is the same color. If the cell of i and the cell of j is

different colors, the (i, j) element is −1. Else, the value

of the element is 0. We can get matrix M by multiply-

ing template-matrix and state-matrix. If any elements

of matrix M is 0, this evaluation function returns the

value of −∞. Or else, this evaluation function return

the sum of the elements of matrix M.

He compared developed AI which use this method

to the previous AI [6]. Results of the test indicated that

his AI is better than the previous one.

2.2 The error of teikei

Figure(4) is similar to figure(5). Each figures, tiles in

the area of inside of the black frame satisfy arrange-

ments of domino-chain. Figure(4) surely has a poten-

tial of 5 step-chain. By contrast, figure(5) has a prob-

lem. It seems that figure(5) also has a potential of 5

step-chain. However it will stop at third disappearance.

Such errors are called ”bouhatsu” or just ”error”.

2.3 Weakness of Tomizawa’s method

Tomizawa’s method has two problems:

1. His method doesn’t consider the error of teikei.

2. There is no room for extension in his evaluation

function.

Therefore, Tomizawa ’s method can ’t prevent errors

well.



University of Aizu, Graduation Thesis. March, 2015 s1190220 3

Figure 4:

Figure 5:

When we want to prevent errors using original eval-

uation function with some treatment, I think that we

can choose from two ways. One is like that:

1. Search all relations which make the error like

a, b, c, d in figure() .

2. Pick out two positions from set of relations which

is searched in 1, and add negative value to ele-

ments of template-matrix which indicate the rela-

tion of these positions.

3. Forward step-chain and Repeat from 1 if there are

any group which can disappear.

Another is like that:

1. Pick out two positions which are adjacent by hor-

izontally or vertically like a, b, and add negative

value to elements of template-matrix which indi-

cate the relation of these positions.

2. Forward step-chain.

3. Repeat 1 and 2 for new field.

Although we take either way, we can not express actual

constraints.

3 Proposal method

3.1 CSP

Constraint satisfaction problems (CSPs) are mathemat-

ical problems defined as a set of objects whose state

must satisfy a number of constraints or limitations.

CSPs represent the entities in a problem as a homo-

geneous collection of finite constraints over variables,

which is solved by constraint satisfaction methods.

CSPs are the subject of intense research in both ar-

tificial intelligence and operations research, since the

regularity in their formulation provides a common ba-

sis to analyze and solve problems of many unrelated

families. [4]

There are many programing libraries which solve

CSP. In this research, We use python-constraint the ex-

ternal library of Python. [5]

3.2 Improvement of Tomizawa’s method

It is too hard to prevent errors if we use only

Tomizawa’s method. Therefore, we created the plu-

gin using CSP solver. This plugin works as evaluation

function which checks if the state of the field corre-

sponds to teikei.



University of Aizu, Graduation Thesis. March, 2015 s1190220 4

CSP consists of three elements. They are vari-

ables, domains and constraints. In this method, vari-

ables correspond to the position of the field. Vari-

ables are named X(i, j) which is regarded as the (i, j)

element of the field. Usually, each domains is set of

Red, Blue,Yellow,Green and Empty. Those domains

are reduced during the progress of a game. Constraint

has three types as bellow:

eq2: the relation between two variables which are the

same value.

ne2: the relation between two variables which are the

different value.

ne4: the relation between four variables all of which

are not the same value or which have the value of

”Empty”.

The proposed method is separated into two parts:

preparing before the game and selecting a action dur-

ing the game. Before the game, constraints are defined.

During the game, domains are defined and field are

evaluated to select the action which seems the best to

make the teikei.

Before the game, we make a set of constraints. In

this part, we use a template table. In the case of mak-

ing teikei described figure(6).a , the template table be-

comes figure(6).b. This table has potential to produce 8

step-chain. Numbers in the table indicate the order of

disappearance during the step-chain. Letters indicate

that the puyo which is placed on the position which

letter is in must not be related to step-chain. Letters

would be used to set a constraint to prevent an error.

To find a constraint is performed in two steps. First

step is for making teikei, second step is for preventing

an error. The reason of dividing into two step is that

former constraints are useful to reduce the amount of

latter constraints. Positions which have the same label

in template-table must have the same value. For exam-

ple, X(3,12), X(3,11), X(3,10) and X(2,9) must have the same

value. We add these sets and a flag of eq-constraint to

set of constraints together. To find ne-constraint, we

have to take some steps. First, we consider positions

which have the same number in the template-table as a

group. The pair of group which adjoin horizontally or

vertically must be the different value, If these group is

the same value, it would be disappear in the same time.

We add the pair which are pulled out from each groups

and a flag of be-constraint to set of constraint together.

Next, we make a template-table which is lack of the

Figure 6:

Figure 7: temp figure



University of Aizu, Graduation Thesis. March, 2015 s1190220 5

Figure 8:

label 0 (figure(7).a). Likewise, we repeats the same

operations for this template-table. This repeating is to

prevent such situation(figure(7).b). In the figure(7).b,

values of (1, 8), (0, 8), (0, 9), (0, 10), (0, 11) are disap-

peared if these values are the same color, and then this

step-chain is stopped in the label 4. We repeat these op-

erations for the template-table which is lack of the label

0 and 1, and also repeat for the template-table which is

lack of the label 0, 1 and 2. To find the constraint which

is used for preventing an error, we pull out four po-

sitions which adjoin horizontally or vertically such as

figure(8).a and figure(8).b If all labels which are pulled

out are some numbers, we ignore those. Also, if any

pair of the members of the group is appeared in the

ne2-constraint, we ignore those. In other cases, we add

these group and a flag of ne4-constraint to set of con-

straint together. We repeats the same operations for

the template-table which is lack of the label 0, which

is lack of the label 0 and 1.

During the game, every time an state of field is

changed, we search all possible actions for three turns

later. Then, we find the values which are satisfied all

constraints for all valuables and evaluate the state of

field. To find the answer which is satisfied constraints,

we set domains conforming to a current state of the

field. If there is a puyo in the position (i, j) of the field,

the domain of X(i, j) is only the color of this puyo. For

example, if there is the puyo which color is red, the

domain of X(i, j) is a set of Red. In other case, if the

label of template-table is a digit, the domain of X(i, j) is

a set of Red, Blue, Green and Yellow. If the label of

Figure 9:

template-table is a letter, the domain of X(i, j) is a set of

Red, Blue, Green, Yellow and Empty. Then, we find

the answer by using CSP solver. If there is no answer,

we evaluate this state of field as −∞. If there are some

answer, we evaluate this state of field by some kind of

evaluation function.

4 Performance Test

We took two AI. One used Tomizawa’s AI with

our plugin (proposal method) and another used

Tomizawa’s AI without my plugin. To clarify the dif-

ference whether to use plugin or not, both AI made the

same domino-chain which has a potential of 8 step-

chain (figure??) with preventing errors, and both AI

use the same weighting function. We compared both

AI by the number of failures in 100 test cases. The

weighting function consists of the following flow:

1. Prepare the weight-table (figure(9)).

2. Calculate the sum of all values on the weight-

table

3. Calculate the sum of the value which position is

filled by any puyo.

4. Return the value: (2) divide by (3).

The value is the closer to 1.0, it is the better . If the

value is 1.0, we see that teikei is completed.



University of Aizu, Graduation Thesis. March, 2015 s1190220 6

Figure 10:

steps with my plugin without my plugin

failed 2 35

finished 98 65

5 Results

The result is shown in the table(5). It indicate that pro-

posal method is better than Tomizawa’s method in the

parts of composing teikei with preventing error. Pro-

posal method failed only 2 cases. On the other hand,

Tomizwa’s method is failed in 35 cases. Because of

randomness, it is hard to succeed by all test cases.

However, 35 cases are too much. In figure(10), if we

use proposal method, we can put any puyo in the po-

sition (3, 8). However, if we only use relationships be-

tween two positions, we cannot put any puyo in the po-

sition (3, 8). These situation would occur in many test

cases. It is reasonable to suppose that these situation

increase the rate of failure.

6 Conclusion and Future Work

This research indicated that some strategies of tile-

matching puzzle games can be applied to AI easily by

CSP solver.

From examine the findings, the rate of failure de-

pend on not only constraints but also weighting func-

tions. We will try to improve it by machine learning in

the future.

Figure 11:

Acknowledgement

I would like to thank Prof. Mozgovoy for supervising

my works.

References

[1] 富沢大介 and池田心, “落下型パズルゲームの定
石形配置法とぷよぷよへの適用,” 2012, 情報処
理学会.

[2] Wikipedia, “Puyo Puyo(series),” 05:52, 10

September 2014.

[3] 武永康彦, “一般化ぷよぷよの NP完全性,” 2005,

数理解析研究所講究録, 1426, 147–152.

[4] Wikipedia, “Constraint satisfaction problem,”

06:27, 7 February 2015.

[5] “python-constraint,” http://labix.org/python-

constraint.

[6] Ikeda Laboratory Project, “Poje”

http://www.jaist.ac.jp/is/labs/ikeda-

lab/poje/index.html.


